The Effect of Dielectric Barrier Discharge (DBD) Plasma on the Inhibition of Enterococcus Faecalis and Streptococcus Mutans

Main Article Content

Khnsaa Abdullah
https://orcid.org/0009-0006-0873-879X
Saba J. Kadhem

Abstract

This study investigates the effect of Dielectric Barrier Discharge (DBD) plasma on the inhibition of bacterial growth. The DBD plasma system operates with a high-voltage power supply at a frequency of 8.4 kHz and an AC voltage of 20 kV. The study utilized two strains of pathogenic gram-positive bacteria, Streptococcus mutans and Enterococcus faecalis. The bacterial species were split into two groups at two distinct dilution levels (108). Following a series of dilution steps ranging from 101 to 109. The bacteria were subjected to DBD plasma treatment for different durations (0.5, 1, 1.5, 2, and 2.5 min). The Dielectric Barrier Discharge (DBD) plasma treatment resulted in a statistically significant increase in bacterial death (P < 0.05) compared to the control group. Exposure to DBD plasma effectively resulted in bacterial kill; longer treatment durations yielded greater bacterial inactivation. These results demonstrated the potential of DBD plasma in clinical and environmental applications for bacterial control. 

Received: Jul. 28,2024 Revised:  Nov.22, 2024 Accepted: Feb.14,2025

Article Details

Section

Articles

How to Cite

1.
Abdullah K, Kadhem SJ. The Effect of Dielectric Barrier Discharge (DBD) Plasma on the Inhibition of Enterococcus Faecalis and Streptococcus Mutans. IJP [Internet]. 2025 Dec. 1 [cited 2025 Dec. 1];23(4):98-104. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1353

References

1. S. Moreau, M. Moisan, M. Tabrizian, J. Barbeau, J. Pelletier, A. Ricard, L’H. Yahia, J. Appl. Phys. 88, 1166 (2000). https://doi.org/10.1063/1.373792.

2. T. A. Hameed and S. J. Kadhem, Iraqi J. Sci. 60, 2649 (2019). https://doi.org/10.24996/ijs.2019.60.12.14.

3. F. A. Lazem, H. R. Humud, M. J. Alwazzan, Journal of Physics: Conference Series 1963, 012084 (2021). https://doi.org/10.1088/1742-6596/1963/1/012084.

4. J. G. Birmingham, IEEE Trans. Plasma Sci. 32, 1526 (2004). https://doi.org/10.12693/APhysPolA.119.803.

5. M. Moisan, J. Barbeau, M.-C. Crevier, J. Pelletier, N. Philip, and B. Saoudi, J. Pure Appl. Chem. 74, 349 (2002). https://doi.org/10.1351/pac200274030349.

6. X. Guimin, Z. Guanjun, S. Xingmin, M. A. Yue, W. Ning, and L. Yuan, Plasma Sci. Technol. 11, 83 (2009). https://doi.org/10.1088/1009-0630/11/1/17.

7. H. Qassim, S. J. Kadhem, AIP Conf. Proc. 2922, 150005 (2024). https://doi.org/10.1063/5.0183148.

8. K. F. Abdullah, S. J. Kadhem, Journal of Optics, 54, 1100 (2024). https://doi.org/10.1007/s12596-024-01791-4.

9. X. Lu, S. Reuter, M. Laroussi, D. Liu, Nonequilibrium Atmospheric Pressure Plasma Jets Fundamentals, Diagnostics, and Medical Applications, CRC Press, (2019). https://doi.org/10.1201/9780429053665.

10. S. J. Kadhem, Indian J. Phys. 98, 4199 (2024). https://doi.org/10.1007/s12648-024-03155-x.

11. I. K. Abbas, K. A. Adim, Kuwait J. Sci. 50, 223 (2023). https://doi.org/10.1016/j.kjs.2023.05.008.

12. I. K. Abbas, K, Science & Technology Indonesia, 7, 508 (2022). https://doi.org/10.26554/sti.2022.7.4.508-513.

13. M. L. Badran, S. J. Kadhem, Iraqi J. Appl. Phys. 20, 11 (2024).

14. S. N. Rashid, K. A. Aadim, A. S. Jasim, Karbala International Journal of Modern Science 8, 71 (2022). https://doi.org/10.33640/2405-609X.3210.

15. B. Eliasson, W. Egli, and U. Kogelschatz, Pure Appl. Chem. 66, 1275 (1994). https://doi.org/10.1351/pac199466061275.

16. N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, Plas. Sour. Sci. Technol. 9, 340 (2000). https://doi.org/10.1088/0963-0252/9/3/312.

17. N. Gherardi and F. Massines, IEEE Trans. plasma Sci. 29, 536 (2001). https://doi.org/10.1109/27.928953.

18. J. J. Shi, X.-T. Deng, R. Hall, J. D. Punnett, and M. G. Kong, J. Appl. Phys. 94, 6303 (2003). https://doi.org/10.1063/1.1622110.

19. F. Massines, N. Gherardi, N. Naudé, and P. Ségur, Plasma Phys. Control. Fusion 47, B577 (2005). https://doi.org/10.1088/0741-3335/47/12B/S42.

20. Murad M. Kadhim, Qusay A. Abbas, Mohammed R. Abdulameer, Iraqi J. Sci. 63, 2048 (2022). https://doi.org/10.24996/ijs.2022.63.5.20.

21. U. Kogelschatz, IEEE Trans. plasma Sci. 30, 1400 (2002). https://doi.org/10.1109/TPS.2002.804201.

22. R. Brandenburg, Plasma Sources Science Technology 26, 53001 (2017). https://doi.org/10.1088/1361-6595/aa6426.

23. S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, J. A.-Clifford, PLOS One 6, e16270 (2011). https://doi.org/10.1371/journal.pone.0016270.

24. I. Koban, M. H. Geisel, B. Holtfreter, L. Jablonowski, N.-O. Hübner, R. Matthes, K. Masur, K.-D. Weltmann, A. Kramer, T. Kocher, Int. Sch. Res. Not. 2013, 573262 (2013). https://doi.org/10.1155/2013/573262.

25. E. Kvam, B. Davis, F. Mondello, and A. L. Garner, Antimicrobial Agents Chemotherapy 56, 2028 (2012). https://doi.org/10.1128/aac.05642-11.

26. Y. Zhao, S. Ojha, C. M. Burgess, D. Sun, and B. K. Tiwari, Int. J. Food Sci. Technol. 56, 721 (2021). https://doi.org/10.1111/ijfs.14708.

27. S. Rupf, A. Lehmann, M. Hannig, B. Schäfer, A. Schubert, U. Feldmann and A. Schindler, J. Med. Microbiol. 59, 206 (2010). https://doi.org/10.1099/jmm.0.013714-0.

28. Y.-Q. Chen, J.-H. Cheng, and D.-W. Sun, Crit. Rev. Food Sci. Nutr. 60, 2676 (2020). https://doi.org/10.1080/10408398.2019.1654429.

29. N. A. Abdullah1, and S. J. Kadhem, Journal of Survey in Fisheries Sciences 10, 1899 (2023).

30. A. N. Alkuraieef, A. M. Alsuhaibani, A. H. Alshawi, N. A. Al faris, D. H. Aljabryn, Food Sci. Technol. 24, e52520 (2022). https://doi.org/10.1590/fst.52520.

31. P. K. Prabhakar, P. P. Srivastav, S. S. Pathak, K. Das, Front. Sustain. Food Syst. 5, 669473 (2021). https://doi.org/10.3389/fsufs.2021.669473.

32. T. A. Hameed, H. R. Humud, L. F. Ali, Iraqi J. Sci. 64, 2889 (2023). https://doi.org/10.24996/ijs.2023.64.6.19.

33. Y. Han, J.-H. Cheng, and D.-W. Sun, Crit. Rev. Food Sci. Nutr., 59, 794 (2019). https://doi.org/10.1080/10408398.2018.1555131.

34. A. Armand, M. Khani, M. Asnaashari, A. AliAhmadi, and B. Shokri, Photodiagnosis and Photodynamic Therapy 26, 327 (2019). https://doi.org/10.1016/j.pdpdt.2019.04.023.

35. I. K. Abbas, M. U. Hussein, M. H. Hasan, and H. H. Murbat, Iraqi J. Sci. 58, 1214 (2017). https://doi.org/10.24996/ijs.2017.58.3A.5

Similar Articles

You may also start an advanced similarity search for this article.