The Effect of Dielectric Barrier Discharge (DBD) Plasma on the Inhibition of Enterococcus Faecalis and Streptococcus Mutans
Main Article Content
Abstract
This study investigates the effect of Dielectric Barrier Discharge (DBD) plasma on the inhibition of bacterial growth. The DBD plasma system operates with a high-voltage power supply at a frequency of 8.4 kHz and an AC voltage of 20 kV. The study utilized two strains of pathogenic gram-positive bacteria, Streptococcus mutans and Enterococcus faecalis. The bacterial species were split into two groups at two distinct dilution levels (108). Following a series of dilution steps ranging from 101 to 109. The bacteria were subjected to DBD plasma treatment for different durations (0.5, 1, 1.5, 2, and 2.5 min). The Dielectric Barrier Discharge (DBD) plasma treatment resulted in a statistically significant increase in bacterial death (P < 0.05) compared to the control group. Exposure to DBD plasma effectively resulted in bacterial kill; longer treatment durations yielded greater bacterial inactivation. These results demonstrated the potential of DBD plasma in clinical and environmental applications for bacterial control.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. S. Moreau, M. Moisan, M. Tabrizian, J. Barbeau, J. Pelletier, A. Ricard, L’H. Yahia, J. Appl. Phys. 88, 1166 (2000). https://doi.org/10.1063/1.373792.
2. T. A. Hameed and S. J. Kadhem, Iraqi J. Sci. 60, 2649 (2019). https://doi.org/10.24996/ijs.2019.60.12.14.
3. F. A. Lazem, H. R. Humud, M. J. Alwazzan, Journal of Physics: Conference Series 1963, 012084 (2021). https://doi.org/10.1088/1742-6596/1963/1/012084.
4. J. G. Birmingham, IEEE Trans. Plasma Sci. 32, 1526 (2004). https://doi.org/10.12693/APhysPolA.119.803.
5. M. Moisan, J. Barbeau, M.-C. Crevier, J. Pelletier, N. Philip, and B. Saoudi, J. Pure Appl. Chem. 74, 349 (2002). https://doi.org/10.1351/pac200274030349.
6. X. Guimin, Z. Guanjun, S. Xingmin, M. A. Yue, W. Ning, and L. Yuan, Plasma Sci. Technol. 11, 83 (2009). https://doi.org/10.1088/1009-0630/11/1/17.
7. H. Qassim, S. J. Kadhem, AIP Conf. Proc. 2922, 150005 (2024). https://doi.org/10.1063/5.0183148.
8. K. F. Abdullah, S. J. Kadhem, Journal of Optics, 54, 1100 (2024). https://doi.org/10.1007/s12596-024-01791-4.
9. X. Lu, S. Reuter, M. Laroussi, D. Liu, Nonequilibrium Atmospheric Pressure Plasma Jets Fundamentals, Diagnostics, and Medical Applications, CRC Press, (2019). https://doi.org/10.1201/9780429053665.
10. S. J. Kadhem, Indian J. Phys. 98, 4199 (2024). https://doi.org/10.1007/s12648-024-03155-x.
11. I. K. Abbas, K. A. Adim, Kuwait J. Sci. 50, 223 (2023). https://doi.org/10.1016/j.kjs.2023.05.008.
12. I. K. Abbas, K, Science & Technology Indonesia, 7, 508 (2022). https://doi.org/10.26554/sti.2022.7.4.508-513.
13. M. L. Badran, S. J. Kadhem, Iraqi J. Appl. Phys. 20, 11 (2024).
14. S. N. Rashid, K. A. Aadim, A. S. Jasim, Karbala International Journal of Modern Science 8, 71 (2022). https://doi.org/10.33640/2405-609X.3210.
15. B. Eliasson, W. Egli, and U. Kogelschatz, Pure Appl. Chem. 66, 1275 (1994). https://doi.org/10.1351/pac199466061275.
16. N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, Plas. Sour. Sci. Technol. 9, 340 (2000). https://doi.org/10.1088/0963-0252/9/3/312.
17. N. Gherardi and F. Massines, IEEE Trans. plasma Sci. 29, 536 (2001). https://doi.org/10.1109/27.928953.
18. J. J. Shi, X.-T. Deng, R. Hall, J. D. Punnett, and M. G. Kong, J. Appl. Phys. 94, 6303 (2003). https://doi.org/10.1063/1.1622110.
19. F. Massines, N. Gherardi, N. Naudé, and P. Ségur, Plasma Phys. Control. Fusion 47, B577 (2005). https://doi.org/10.1088/0741-3335/47/12B/S42.
20. Murad M. Kadhim, Qusay A. Abbas, Mohammed R. Abdulameer, Iraqi J. Sci. 63, 2048 (2022). https://doi.org/10.24996/ijs.2022.63.5.20.
21. U. Kogelschatz, IEEE Trans. plasma Sci. 30, 1400 (2002). https://doi.org/10.1109/TPS.2002.804201.
22. R. Brandenburg, Plasma Sources Science Technology 26, 53001 (2017). https://doi.org/10.1088/1361-6595/aa6426.
23. S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, J. A.-Clifford, PLOS One 6, e16270 (2011). https://doi.org/10.1371/journal.pone.0016270.
24. I. Koban, M. H. Geisel, B. Holtfreter, L. Jablonowski, N.-O. Hübner, R. Matthes, K. Masur, K.-D. Weltmann, A. Kramer, T. Kocher, Int. Sch. Res. Not. 2013, 573262 (2013). https://doi.org/10.1155/2013/573262.
25. E. Kvam, B. Davis, F. Mondello, and A. L. Garner, Antimicrobial Agents Chemotherapy 56, 2028 (2012). https://doi.org/10.1128/aac.05642-11.
26. Y. Zhao, S. Ojha, C. M. Burgess, D. Sun, and B. K. Tiwari, Int. J. Food Sci. Technol. 56, 721 (2021). https://doi.org/10.1111/ijfs.14708.
27. S. Rupf, A. Lehmann, M. Hannig, B. Schäfer, A. Schubert, U. Feldmann and A. Schindler, J. Med. Microbiol. 59, 206 (2010). https://doi.org/10.1099/jmm.0.013714-0.
28. Y.-Q. Chen, J.-H. Cheng, and D.-W. Sun, Crit. Rev. Food Sci. Nutr. 60, 2676 (2020). https://doi.org/10.1080/10408398.2019.1654429.
29. N. A. Abdullah1, and S. J. Kadhem, Journal of Survey in Fisheries Sciences 10, 1899 (2023).
30. A. N. Alkuraieef, A. M. Alsuhaibani, A. H. Alshawi, N. A. Al faris, D. H. Aljabryn, Food Sci. Technol. 24, e52520 (2022). https://doi.org/10.1590/fst.52520.
31. P. K. Prabhakar, P. P. Srivastav, S. S. Pathak, K. Das, Front. Sustain. Food Syst. 5, 669473 (2021). https://doi.org/10.3389/fsufs.2021.669473.
32. T. A. Hameed, H. R. Humud, L. F. Ali, Iraqi J. Sci. 64, 2889 (2023). https://doi.org/10.24996/ijs.2023.64.6.19.
33. Y. Han, J.-H. Cheng, and D.-W. Sun, Crit. Rev. Food Sci. Nutr., 59, 794 (2019). https://doi.org/10.1080/10408398.2018.1555131.
34. A. Armand, M. Khani, M. Asnaashari, A. AliAhmadi, and B. Shokri, Photodiagnosis and Photodynamic Therapy 26, 327 (2019). https://doi.org/10.1016/j.pdpdt.2019.04.023.
35. I. K. Abbas, M. U. Hussein, M. H. Hasan, and H. H. Murbat, Iraqi J. Sci. 58, 1214 (2017). https://doi.org/10.24996/ijs.2017.58.3A.5