Characterization of Arc Mg and Mg/C Plasmas Generated by Electrical Explosion Strips
Main Article Content
Abstract
This research investigates the properties and behaviour of magnesium (Mg) and magnesium/carbon (Mg/C) plasmas generated using the electric explosion strips technique, a method noted for producing large quantities of nanomaterials and generating plasma in confined environments. Plasma was created by passing high current densities through a metal stripe immersed in distilled, deionized water, leading to rapid ionization. Optical Emission Spectroscopy (OES) was employed to analyse the plasma properties, as it preserves the original state of the plasma and allows for detailed characterization based on emitted optical spectra. Key parameters, including electron temperature (Te) and electron density (ne), were determined using the Boltzmann diagram and Stark broadening method, respectively. The study observed that increasing exploding current, ranging from 25 to 125 A, enhanced the ionization processes, leading to higher electron temperatures and densities. Te increases from 0.71 to 0.97 eV and ne increases from 21.41 × 1016 to 25.37 × 1016 cm-3 for magnesium plasma. At the same current value, Te climbed from 0.92 to 1.10 eV, and the electron density increased from 11.5×1017 to 19.7×1017 cm-3 when the magnesium bar detonated together with the carbon rod. The findings highlight the significant effect of detonation current on plasma properties, which is attributed to enhanced heating mechanisms and increased ionization, contributing to higher electron densities and temperatures.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. S. Singh and N. Goswami, Int. J. Mat. Res. 114, 738 (2023). DOI: doi:10.1515/ijmr-2021-8713.
2. S. M. Fathi and S. J. Kadhim, Iraqi J. Sci. 63, 163 (2022). DOI: 10.24996/ijs.2022.63.1.17.
3. H. B. Baniya, R. Shrestha, R. P. Guragain, M. B. Kshetri, B. P. Pandey, and D. P. Subedi, Int. J. Poly. Sci. 2020, 9247642 (2020). DOI: 10.1155/2020/9247642.
4. K. A. Aadim Ph D and A. S. Jasim Ph D, Karbala Int. J. Mod. Sci. 8, 71 (2022).
DOI: 10.33640/2405-609X.3210.
5. H. J. Imran, K. A. Hubeatir, K. A. Aadim, and D. S. Abd, J. Phys.: Conf. Ser. 1818, 012127 (2021).
DOI: 10.1088/1742-6596/1818/1/012127.
6. R. S. Mohammed, K. A. Aadim, and K. A. Ahmed, Karbala Int. J. Mod. Sci. 8, 88 (2022).
DOI: 10.33640/2405-609X.3225.
7. X. Lu, Z. Xiong, F. Zhao, Y. Xian, Q. Xiong, W. Gong, C. Zou, Z. Jiang, and Y. Pan, Appl. Phys. Lett. 95, 181501 (2009). DOI: 10.1063/1.3258071.
8. M. J. Ketan and K. A. Aadim, Iraqi J. Sci. 64, 188 (2023). DOI: 10.24996/ijs.2023.64.1.19.
9. M. H. Suhail, K. A. Adim, and A. H. Wanas, Curr. J. Appl. Sci. Tech. 7, 263 (2015).
DOI: 10.9734/BJAST/2015/14876.
10. M. H. Kabir, M. L. Guindo, R. Chen, A. Sanaeifar, and F. Liu, Foods 11, 2051 (2022). DOI: 10.3390/foods11142051.
11. M. Al-Salihi, R. Yi, S. Wang, Q. Wu, F. Lin, J. Qu, and L. Liu, Opt. Expr. 29, 4159 (2021).
DOI: 10.1364/OE.410878.
12. K. A. Aadim, A. Z. Mohammad, and M. A. Abduljabbar, IOP Conf. Ser.: Mater. Sci. Eng. 454, 012028 (2018). DOI: 10.1088/1757-899X/454/1/012028.
13. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (West Sussex, UK, John Wiley & Sons, 2013).
14. Z. M. Hasan and Q. A. Abbas, Iraqi J. Appl. Phys. 20, 19 (2024).
15. A. F. Ahmed, Iraqi J. Phys. 17, 103 (2019). DOI: 10.30723/ijp.v17i42.438.
16. K. A. Aadim, Iraqi J. Phys. 14, 122 (2019). DOI: 10.30723/ijp.v14i31.179.
17. T. Mieno, Plasma Science and Technology: Progress in Physical States and Chemical Reactions (Rejeka, Croatia, InTech, 2016).
18. M. A. Ismail, H. Imam, A. Elhassan, W. T. Youniss, and M. A. Harith, J. Anal. At. Spectrom. 19, 489 (2004). DOI: 10.1039/B315588A.
19. M. L. Badran and S. J. Kadhem, Iraqi J. Phys. 22, 10 (2024). DOI: 10.30723/ijp.v22i1.1194.
20. N. K. Hussein and S. J. Kadhem, Iraqi J. Sci. 63, 2492 (2022). DOI: 10.24996/ijs.2022.63.6.16.
21. Z. M. Hasan and Q. A. Abbas, Iraqi J. Phys. 22, 31 (2024). DOI: 10.30723/ijp.v22i1.1191.
22. R. S. Mohammed, K. A. Aadim, and K. A. Ahmed, Iraqi J. Sci. 63, 3711 (2022). DOI:10.24996/ijs.2022.63.9.5.
23. K. A. Aadim, Iraqi J. Phys. 16, 1 (2018). DOI: 10.30723/ijp.v16i38.3.
24. Q. A. Abbas, Iraqi J. Sci. 60, 1251 (2019). DOI: 10.24996/ijs.2019.60.6.8.
25. A. H. Shaker, K. A. Aadim, and M. H. Nida, J. Opt. 53, 1273 (2024). DOI: 10.1007/s12596-023-01256-0.
26. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Los Angeles, CA, USA, Springer, 1984).
27. A. Kramida and Y. Ralchenko, Nation. Instit. Stand. Tech. 5.12, (1999). DOI: 10.18434/T4W30F.
28. A. K. Pathak, N. K. Rai, R. Kumar, P. K. Rai, A. K. Rai, and C. G. Parigger, Atoms 6, 42 (2018). DOI: 10.3390/atoms6030042.