Influence of Incorporating MWCNTs on Some Physical Characteristics of Blend Nanocomposites

Main Article Content

Lubna Abdul-Aziz Jassim
Mohammed Kadhim Jawad
https://orcid.org/0000-0002-5160-1645

Abstract

Nanocomposite membranes made of chitosan (Cs) concentrations, and polyvinyl alcohol (PVA) with a fixed ratio of (60:40), then incorporated with different concentrations of multi-walled carbon nanotubes (MWCNTs) (1, 1.5, 2, 2.5, and 3%) were created using the solution cast method. The membranes were identified using UV-vis spectroscopy, Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The results demonstrated that the samples were sufficiently stable, and the interactions between nanoparticles and polymers were generally negligible. XRD patterns showed a crystalline phase of PVA, an amorphous phase of chitosan, and a more crystalline phase as MWCNTs were introduced. In particular, at high percentages of MWCNTs, the dominant phase (002), connected to MWCNTs, was shifted to a higher value. The UV-vis spectroscopy of the sample showed only one absorption peak at about 230 nm and no other peaks. This may be due to transparency in PVA and Cs. The band gap energy decreased when higher percentages of MWCNTs were added to the mixture.

Article Details

How to Cite
1.
Influence of Incorporating MWCNTs on Some Physical Characteristics of Blend Nanocomposites. IJP [Internet]. 2024 Mar. 1 [cited 2024 Apr. 27];22(1):95-105. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1208
Section
Articles

How to Cite

1.
Influence of Incorporating MWCNTs on Some Physical Characteristics of Blend Nanocomposites. IJP [Internet]. 2024 Mar. 1 [cited 2024 Apr. 27];22(1):95-105. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1208

References

R. A. Ilyas, H. A. Aisyah, A. H. Nordin, N. Ngadi, M. Y. M. Zuhri, M. R. M. Asyraf, S. M. Sapuan, E. S. Zainudin, S. Sharma, and H. Abral, Polymers 14, 874 (2022).

D. J. Hassana and N. A. Ali, Iraqi J. Phys. 20, 26 (2022).

Z. B. Roslan, Z. Ramli, M. R. Razman, M. Asyraf, M. Ishak, R. Ilyas, and N. Nurazzi, Sustainability 13, 8705 (2021).

S. S. S. Ali, M. R. Razman, A. Awang, M. Asyraf, M. Ishak, R. Ilyas, and R. J. Lawrence, Sustainability 13, 4441 (2021).

A. Rozilah, C. A. Jaafar, S. Sapuan, I. Zainol, and R. Ilyas, Polymers 12, 2605 (2020).

S. Sapuan, H. Aulia, R. Ilyas, A. Atiqah, T. Dele-Afolabi, M. Nurazzi, A. Supian, and M. Atikah, Polymers 12, 2211 (2020).

F. La Mantia and M. Morreale, Compo. Part A: Appl. Sci. Manuf. 42, 579 (2011).

R. Ilyas, S. Sapuan, M. Harussani, M. Hakimi, M. Haziq, M. Atikah, M. Asyraf, M. Ishak, M. Razman, and N. Nurazzi, Polymers 13, 1326 (2021).

J. Tarique, S. Sapuan, A. Khalina, S. Sherwani, J. Yusuf, and R. Ilyas, J. Mat. Res. Tech. 13, 1191 (2021).

A. H. Mohsen and N. A. Ali, Iraqi J. Sci. 63, 4761 (2022).

A. Abdelghany, M. Meikhail, A. Oraby, and M. Aboelwafa, Poly. Bulle. 80, 1 (2023).

B. T. Iber, N. A. Kasan, D. Torsabo, and J. W. Omuwa, J. Ren. Mater. 10, 1097 (2022).

A. Z. Naser, I. Deiab, and B. M. Darras, RSC Advan. 11, 17151 (2021).

E. H. Al-Tememe, H. Fatima Malk, and A. Tahseen Alaridhee, Mater. Today Proce. 42, 2441 (2021).

N. M. Ali, A. A. Kareem, and A. R. Polu, J. Inor. Organomet. Poly. Mater. 32, 4070 (2022).

N. Mulchandani, N. Shah, and T. Mehta, Poly. Poly. Compos. 25, 241 (2017).

L. Goettler, K. Lee, and H. Thakkar, Poly. Rev. 47, 291 (2007).

S. Parveen, R. Misra, and S. K. Sahoo, Nanomedicine : nanotechnology, biology, and medicine 8, 147 (2012).

S. I. Hussein, Iraqi J. Sci. 61, 1298 (2020).

J. Chen, S. Wei, and H. Xie, Journal of Physics: Conference Series (IOP Publishing, 2021). p. 012184.

S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

S. Iijima, Nature 354, 56 (1991).

M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science 287, 637 (2000).

S. L. Shindé and J. Goela, High Thermal Conductivity Materials (USA, Springer, 2006).

P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, Phys. Rev. Lett. 87, 215502 (2001).

J. Abrahamson, P. G. Wiles, and B. L. Rhoades, Carbon 11, 1873 (1999).

S. Tang, P. Zou, H. Xiong, and H. Tang, Carbohyd. Poly. 72, 521 (2008).

H. Hu, J. H. Xin, H. Hu, A. Chan, and L. He, Carbohyd. Poly. 91, 305 (2013).

S. M. Jasim and N. A. Ali, Iraqi J. Phys. 17, 13 (2019).

S. Alamdari, O. Mirzaee, F. N. Jahroodi, M. J. Tafreshi, M. S. Ghamsari, S. S. Shik, M. H. M. Ara, K.-Y. Lee, and H.-H. Park, Surf. Inter. 34, 102349 (2022).

E. A. Swady and M. K. Jawad, AIP Conference Proceedings (AIP Publishing, 2022). p. 020053.

C. Vasile and M. Baican, Molecules 26, 1263 (2021).

S. Kumar, B. Krishnakumar, A. J. Sobral, and J. Koh, Carbohyd. Poly. 205, 559 (2019).

F. Aljubouri and M. K. Jawad, Iraqi J. Phys. 21, 1 (2023).

R. Das, S. Bee Abd Hamid, M. Eaqub Ali, S. Ramakrishna, and W. Yongzhi, Curr. Nanosci. 11, 23 (2015).

T. Belin and F. Epron, Mater. Sci. Eng. B 119, 105 (2005).

R. Sengwa, S. Choudhary, and P. Dhatarwal, Advan. Comp. Hyb. Mater. 2, 162 (2019).

M. I. Shariful, S. B. Sharif, J. J. L. Lee, U. Habiba, B. C. Ang, and M. A. Amalina, Carbohyd. Poly. 157, 57 (2017).

M. A. Saleh and M. K. Jawad, Nano Hyb. Comp. 35, 85 (2022).

M. A. Pujana, L. Pérez-Álvarez, L. C. C. Iturbe, and I. Katime, European Poly. J. 61, 215 (2014).

M. V. D. M. Ribeiro, I. D. S. Melo, F. D. C. D. C. Lopes, and G. C. Moita, Brazilian J. Pharm. Sci. 52, 741 (2016).

B. Y. Ahmed and S. O. Rashid, Arabian J. Chem. 15, 104096 (2022).

G. Asnag, A. Oraby, and A. Abdelghany, Comp. Part B: Eng. 172, 436 (2019).

Similar Articles

You may also start an advanced similarity search for this article.