Gas Sensor for Hazardous Nitrogen Dioxide Based on TiO2 Nanotube Synthesis via Electrochemical Method

Main Article Content

Mina Mohmmed Faris
Asmaa Kadim Ayal
https://orcid.org/0000-0001-9229-7101

Abstract

Because of the quick growth of electrical instruments used in noxious gas detection, the importance of gas sensors has increased. X-ray diffraction (XRD) can be used to examine the crystal phase structure of sensing materials, which affects the properties of gas sensing. This contributes to the study of the effect of electrochemical synthesis of titanium dioxide (TiO2) materials with various crystal phase shapes, such as rutile TiO2 (R-TiO2NTs) and anatase TiO2 (A-TiO2NTs). In this work, we have studied the effect of voltage on preparing TiO2 nanotube arrays via the anodization technique for gas sensor applications. The results acquired from XRD, energy dispersion spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM) elucidate that TiO2 was created. In addition, systematically examining the gas detection properties was also done. The gas sensor was produced from TiO2 nanotubes, and the gas-detecting features were directed at nitrogen dioxide (NO2), which is a hazardous gas. The sensor formed from TiO2 nanotubes detects NO2 gas at various temperatures, from room temperature to    300 oC, and it has good sensitivity to this gas. The results exhibit that the gas sensor that was synthesized at 30 V has good sensitivity and a short response time at room temperature for NO2 gas sensing.

Article Details

How to Cite
1.
Gas Sensor for Hazardous Nitrogen Dioxide Based on TiO2 Nanotube Synthesis via Electrochemical Method. IJP [Internet]. 2023 Dec. 1 [cited 2024 Mar. 5];21(4):1-13. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1150
Section
Articles

How to Cite

1.
Gas Sensor for Hazardous Nitrogen Dioxide Based on TiO2 Nanotube Synthesis via Electrochemical Method. IJP [Internet]. 2023 Dec. 1 [cited 2024 Mar. 5];21(4):1-13. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1150

References

P. Rai, S. Raj, K.-J. Ko, K.-K. Park, and Y.-T. Yu, Sens. Actuat. B: Chem. 178, 107 (2013).

P. Szczepański, R. Kisiel, and R. S. Romaniuk, in Proc. of SPIE, Warsaw University of Technology (Poland) Institute of Microelectronics and Optoelectronics, 2013, p. 890201.

D. T. H. To, J. Y. Park, B. Yang, N. V. Myung, and Y.-H. Choa, Sens. Actuat. Rep. 6, 100166 (2023).

K. Nakata and A. Fujishima, J. Photochem. Photobio. C: Photochem. Rev. 13, 169 (2012).

Q. Zhang, E. Uchaker, S. L. Candelaria, and G. Cao, Chem. Soci. Rev. 42, 3127 (2013).

T. J. Awaid, A. K. Ayal, A. M. Farhan, M. S. Sando, and L. Y. Chin, Baghdad Sci. J. 17, 1183 (2020).

H. S. Hreo, A. M. Holi, A. A. Al-Zahrani, A. K. Ayal, and M. Almamari, Bullet. Mat. Sci. 45, 205 (2022).

L. Chin, N. Harun, A. Ayal, Y. Mohd, and L. Pei, Int. J. Eng. Advan. Tech. 9, 5479 (2019).

A. K. Ayal, A. M. Farhan, and Y.-C. Lim, Int. J. Eng. Tech. 7, 454 (2018).

N. A. Samsudin, Z. Zainal, H. N. Lim, Y. Sulaiman, S.-K. Chang, Y.-C. Lim, A. K. Ayal, and W. N. M. Amin, RSC advan. 8, 23040 (2018).

G. Eranna, Metal Oxide Nanostructures as Gas Sensing Devices. (Pilani, India, CRC press, 2011).

V. Saasa and B. Mwakikunga, Mat. Res. Bull. 164, 112288 (2023).

Q. Fu, K. Lu, N. Li, and Z. Dong, Mat. Res. Bull. 168, 112457 (2023).

O. Sisman, D. Zappa, V.-A. Maraloiu, and E. Comini, Materials 16, 4802 (2023).

A. Kusior, M. Radecka, K. Zakrzewska, A. Reszka, and B. Kowalski, Sens. Actuat. B: Chem. 189, 251 (2013).

Y. Gönüllü, A. A. Haidry, and B. Saruhan, Sens. Actuat. B: Chem. 217, 78 (2015).

Z. Wu, Y. Wang, Q. Wu, X. Cheng, Q. Wang, Y. Yang, B. An, P. Wang, and E. Xie, Appl. Surf. Sci. 614, 156223 (2023).

J. Wu, C. Zhang, Q. Li, L. Wu, D. Jiang, and J. Xia, Sol. Sta. Ionics 292, 32 (2016).

H. Shwetha, S. Sharath, B. Guruprasad, and S. Rudraswamy, Micro Nano Eng. 16, 100156 (2022).

M. D. Fernández-Ramos, L. Capitan-Vallvey, L. Pastrana-Martínez, S. Morales-Torres, and F. Maldonado-Hodar, Sens. Actuat. B: Chem. 368, 132103 (2022).

S. Ma, J. Jia, Y. Tian, L. Cao, S. Shi, X. Li, and X. Wang, Ceram. Int. 42, 2041 (2016).

Y. Gao, D. Kong, J. Han, W. Zhou, Y. Gao, T. Wang, and G. Lu, J. Coll. Inter. Sci. 627, 332 (2022).

X. Wang, S. Li, L. Xie, X. Li, D. Lin, and Z. Zhu, Ceram. Int. 46, 15858 (2020).

S. M. Omran, E. T. Abdullah, and O. A. Al-Zuhairi, Iraqi J. Sci. 63, 3719 (2022).

Y. Shi, X. Li, X. Sun, X. Shao, and H. Wang, J. All. Comp. 963, 171190 (2023).

K. Kim, P. G. Choi, T. Itoh, and Y. Masuda, ACS Appl. Mat. Inter. 12, 51637 (2020).

J.-H. Lee, Sens. Actuat. B: Chem. 140, 319 (2009).

W. A. Al-Taa'y and B. A. Hasan, Iraqi J. Sci. 62, 4385 (2021).

A. K. Ayal, Baghdad Sci. J. 15, 0057 (2018).

A. Kusior, J. Klich-Kafel, A. Trenczek-Zajac, K. Swierczek, M. Radecka, and K. Zakrzewska, J. Eur. Ceram. Soci. 33, 2285 (2013).

R. Dubey, K. V. Krishnamurthy, and S. Singh, Res. Phys. 14, 102390 (2019).

O. Wiranwetchayan, S. Promnopat, T. Thongtem, A. Chaipanich, and S. Thongtem, Mat. Chem. Phys. 240, 122219 (2020).

A. Aboulouard, M. K. Atouailaa, B. Elhadadi, M. Bensemlali, M. Boulghallat, and S. Laasri, Mat. Today: Proce. 66, 329 (2022).

M. Q. Fahem and T. A. Hassan, Iraqi J. Sci. 63, 4740 (2022).

O. V. Otieno, E. Csáki, O. Kéri, L. Simon, I. E. Lukács, K. M. Szécsényi, and I. M. Szilágyi, J. Ther. Anal. Calorim. 139, 57 (2020).

H. Sun, C. Wang, S. Pang, X. Li, Y. Tao, H. Tang, and M. Liu, J. Non-Crys. Sol. 354, 1440 (2008).

M. Gholami, M. Zarei-Jelyani, M. Babaiee, S. Baktashian, and R. Eqra, Ionics 26, 4391 (2020).

A. K. Ayal, A. K. Hashim, A. M. Mohammed, A. M. Farhan, A. M. Holi, and Y.-C. Lim, J. Elect. Mat. 50, 5161 (2021).

M. Radecka, A. Wnuk, A. Trenczek-Zajac, K. Schneider, and K. Zakrzewska, Int. J. Hydro. Ener. 40, 841 (2015).

A. K. Ayal, A. M. Farhan, A. M. Holi, A. A. Al-Zahrani, and Y.-C. Lim, J. Mat. Sci.: Mat. Elect. 34, 7 (2023).

L. Y. Chin, N. Mustaffa, A. K. Ayal, D. Kanakaraju, and L. Y. Pei, J. Chem 23, 173 (2021).

R. Rella, J. Spadavecchia, M. Manera, S. Capone, A. Taurino, M. Martino, A. P. Caricato, and T. Tunno, Sens. Actuat. B: Chem. 127, 426 (2007).

Y. Kwon, H. Kim, S. Lee, I.-J. Chin, T.-Y. Seong, W. I. Lee, and C. Lee, Sens. Actuat. B: Chem. 173, 441 (2012).

H. J. Abdul-Ameer, M. F. Al-Hilli, and F. T. Ibrahim, Iraqi J. Sci. 64, 630 (2023).

S. N. Kareem, M. H. Suhail, and O. G. Abdullah, Tren. Sci. 20, 5890 (2023).

R. M. S. Jarrah, in Journal of Physics: Conference Series, IOP Publishing, 2019, p. 012064.

K. Lee, R. Kirchgeorg, and P. Schmuki, J. Phys. Chem. C 118, 16562 (2014).

A. M. Holi, G. Abd Al-Sajad, N. N. Palei, A. A. Al-Zahrani, and A. S. Najm, Nano Biomedic. Eng. 14, 7 (2022).

P. Bindra, S. Gangopadhyay, and A. Hazra, IEEE Sens. J. 20, 664 (2019).

G. Yang, M. Zhang, D. Dong, X. Pan, Y. Zhou, S.-T. Han, Z. Xu, W. Wang, and Y. Yan, J. Mat. Chem. C 7, 11118 (2019).

Similar Articles

You may also start an advanced similarity search for this article.