Assessment of the Natural Radioactivity Levels of Soil Samples in IT1 Oil Reservoirs in Kirkuk City, Northeast Iraq
Main Article Content
Abstract
In this study, gamma-ray spectrometry with an HPGe detector was used to measure the specific activity concentrations of 226Ra, 232Th, and 40K in soil samples collected from IT1 oil reservoirs in Kirkuk city, northeast Iraq. The “spectral line Gp” gamma analysis software package was used to analyze the spectral data. 226Ra specific activity varies from 9 0.34 Bq.kg-1 to 17 0.47 Bq.kg-1. 232Th specific activity varies from 6.2 0.08 Bq.kg-1 to 18 0.2 Bq.kg-1. 40K specific activity varies from 25 0.19 Bq.kg-1 to 118 0.41 Bq.kg-1. The radiological hazard due to the radiation emitted from natural radionuclides in soil samples was also assessed. The average values of the radium equivalent (Raeq), external hazard index (Hex), internal hazard index (Hin), gamma index (I), absorbed dose rate (D), outdoor (AEDEout) and indoor (AEDEin) annual effective dose equivalent were 35.391 Bq.kg-1, 0.095, 0.128, 0.253, 16.118 nGy.h-1, 0.0197 mSv.y-1, and 0.0790 mSv.y-1, respectively. All values obtained for the activity concentrations for 226Ra, 232Th, and 40K and the radiological hazard were lower than the global values. This indicates that no harmful radiation effects are posed to the population who work and live near the study area.
Received: Feb. 08, 2023
Accepted: Apr. 07, 2023
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
D. J. Koppel, F. Kho, A. Hastings, D. Crouch, A. Macintosh, T. Cresswell, and S. Higgins, J. envir. Radioact. 241, 106774 (2022).
National Nuclear Energy Commission (Rio de Janeiro (Brazil) 2018).
M. M. Ali, H. Zhao, Z. Li, and N. N. Maglas, RSC Advances 9, 39201 (2019).
E. Salman, M. Muttelab, and J. Manii, Journal of Physics: Conference Series (IOP Publishing, 2019). p. 012017.
A. Macintosh, K. Dafforn, B. Penrose, A. Chariton, and T. Cresswell, Crit. Rev. Envir. Sci. Tech. 52, 3283 (2022).
Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation. Vol. 419. (IAEA, 2004).
M. Al-Masri and H. Suman, J. Radio. Nuc. Chem. 256, 159 (2003).
K. Al-Mehaidi, Reve. Watch Instit., 1 (2006).
M. Attallah, S. Metwally, S. Moussa, and M. A. Soliman, Microchem. J. 146, 789 (2019).
H. M. Abdelbary, E. A. Elsofany, Y. T. Mohamed, M. M. Abo-Aly, and M. F. Attallah, Envir. Sci. Pollut. Res. 26, 30836 (2019).
F. O. Ugbede, O. D. Osahon, and A. F. Akpolile, Envir. Forensics 23, 32 (2022).
N. F. Tawfiq, H. Mansour, and M. Karim, Inter. J. Rece. Res. Rev. Mod. Plasma Phys. 8, 1 (2015).
J. Beretka and P. Mathew, Health Phys. 48, 87 (1985).
Sources and effects of ionizing radiation. 2000, United Nations Scientific Committee on the Effects of Atomic Radiation: New York.
R. F. Jabil, Iraqi J. Phys. 16, 147 (2018).
N. M. Hasan, J. K. Alsaedi, S. K. Alnasri, and A. A. Abdulhasan, Al-Nahrain J. Sci. 24, 33 (2021).
J. Deris and B. F. Dehaghi, Inter. J. Rad. Res. 19, 49 (2021).
E. Agbalagba, G. Avwiri, and Y. Chad-Umoreh, J. Envir. Radio. 109, 64 (2012).
H. Albidhani, K. Gunoglu, and I. Akkurt, Inter. J. Comput. Exper. Sci. Eng. 5, 48 (2019).
A. Al-Kinani, M. Hushari, I. Alsadig, and H. Al-Sulaiti, Donnish J. Res. Envir. Studies 2, 37 (2015).
G. Xhixha, M. Baldoncini, I. Callegari, T. Colonna, F. Hasani, F. Mantovani, F. Shala, V. Strati, and M. X. Kaçeli, Chemosphere 139, 30 (2015).
F. H. Abdullah, H. Saad, A. Farhan, and M. Sharma, SPE International Conference on Health, Safety, and Environment in Oil and Gas Exploration and Production (OnePetro, 2008).
K. K. Ali, S. S. Shafik, and H. A. Husain, Iraqi J. Sci. 58, 1037 (2017).