Assessment of the Effect of Blood Glucose Levels on Standardized Uptake Value (SUV) and 18F-FDG Uptake at Tumors and Normal PET Examinations

Main Article Content

Marwa Safa Riyadh
Samar Omran Issa
https://orcid.org/0000-0001-9821-2279

Abstract

This study evaluated the relationship between the blood glucose level, maximal standardized uptake value (SUVmax), and 18F-FDG uptake in tissues at normal and tumour organs with positron emission tomography/computed tomography (PET/CT) examinations. On the morning of the procedure, finger-stick fasting blood glucose is routinely assessed. The study looked at the SUVmax in the liver and bone of 200 people with F-FDG PET/CT scans for tumors and healthy organs18. The study formed three groups of patients based on their serum glucose levels. The study retrospectively examined the relationship between glucose levels and standardized uptake values. The mean liver and bone SUVmax gradually decreased as blood glucose levels increased, starting at 160 mg/dl. All the groups whose blood glucose levels were between 100 and 160 mg/dl had a slight but significant increase in the uptake of 18F-fluorodeoxyglucose (FDG) in bones and livers compared to the group whose blood glucose levels were all normal. The study concludes that following a blood glucose level of 160 mg/dl, hyperglycemia progressively lowers the absorption of 18F-FDG by the liver and bones. Studies using FDG-PET are especially inaccurate when blood glucose levels are high. Therefore, individuals undergoing FDG-PET examinations should fast and consider their blood glucose levels.

Received: Jun. 22, 2024 Revised: Oct. 19, 2024 Accepted: Dec.09, 2024  

Article Details

Section

Articles

How to Cite

1.
Riyadh MS, Issa SO. Assessment of the Effect of Blood Glucose Levels on Standardized Uptake Value (SUV) and 18F-FDG Uptake at Tumors and Normal PET Examinations. IJP [Internet]. 2025 Jun. 1 [cited 2025 Jun. 24];23(2):13-20. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1327

References

1. A. B. Hade, S. M. Kadam, and S. I. Essa, E. European J. Phys., 277 (2023). DOI: 10.26565/2312-4334-2023-2-31.

2. A. B. Hade and S. I. Essa, E European J. Phys., 241 (2023). DOI: 10.26565/2312-4334-2023-1-32.

3. M. R. Hasan, S. M. Kadam, and S. I. Essa, Iraqi J. Sci. 63, 2000 (2022). DOI: 10.24996/ijs.2022.63.5.15.

4. A. B. Hade and S. I. Essa, Iraqi J. Sci. 65, 4704 (2024). DOI: 10.24996/ijs.2024.65.8(SI).2.

5. H. O’neill, V. Malik, C. Johnston, J. V. Reynolds, and J. O’sullivan, Pharmaceuticals 12, 16 (2019). DOI: 10.3390/ph12010016.

6. A. Chadt and H. Al-Hasani, Pflugers. Arch. - Eur. J. Physiol. 472, 1273 (2020). DOI: 10.1007/s00424-020-02417-x.

7. K. Adekola, S. T. Rosen, and M. Shanmugam, Curr. Opin. Oncol. 24, 650 (2012). DOI: 10.1097/CCO.0b013e328356da72.

8. I. Elia and M. C. Haigis, Nat. Metab. 3, 21 (2021). DOI: 10.1038/s42255-020-00317-z.

9. G. Sambuceti, V. Cossu, M. Bauckneht, S. Morbelli, A. Orengo, S. Carta, S. Ravera, S. Bruno, and C. Marini, European J. Nucl. Med. Mol. Imaging 48, 1278 (2021). DOI: 10.1007/s00259-021-05368-2.

10. I. Sarikaya, J. H. Schierz, and A. Sarikaya, Am. J. Nucl. Med. Mol. Imaging 11, 233 (2021).

11. M. Reijrink, S. A. De Boer, I. F. Antunes, D. S. Spoor, H. J. L. Heerspink, M. E. Lodewijk, M. F. Mastik, R. Boellaard, M. J. W. Greuter, S. Benjamens, R. J. H. Borra, R. H. J. A. Slart, J.-L. Hillebrands, and D. J. Mulder, Mol. Imaging Biol. 23, 117 (2021). DOI: 10.1007/s11307-020-01538-0.

12. H. Lindholm, F. Brolin, C. Jonsson, and H. Jacobsson, EJNMMI Res. 3, 50 (2013). DOI: 10.1186/2191-219X-3-50.

13. I. Sarikaya, A. Sarikaya, and P. Sharma, J. Nucl. Med. Tech. 47, 313 (2019). DOI: 10.2967/jnmt.119.226969.

14. C. Sprinz, S. Altmayer, M. Zanon, G. Watte, K. Irion, E. Marchiori, and B. Hochhegger, PLOS ONE 13, e0193140 (2018). DOI: 10.1371/journal.pone.0193140.

15. A. H. Dias, A. K. Hansen, O. L. Munk, and L. C. Gormsen, EJNMMI Res. 12, 15 (2022). DOI: 10.1186/s13550-022-00884-0.

16. S. Mirpour, P. Meteesatien, and A. H. Khandani, Rev. Española Med. Nucl. Imagen Molec. 31, 71 (2012). DOI: 10.1016/j.remnie.2012.03.007.

17. C. Nahmias and L. M. Wahl, J. Nucl. Med. 49, 1804 (2008). DOI: 10.2967/jnumed.108.054239.

18. K. Shen, B. Liu, X. Zhou, Y. Ji, L. Chen, Q. Wang, and W. Xue, Front. Oncol. 11, 683793 (2021). DOI: 10.3389/fonc.2021.683793.

19. T. Mochizuki, E. Tsukamoto, Y. Kuge, K. Kanegae, S. Zhao, K. Hikosaka, M. Hosokawa, M. Kohanawa, and N. Tamaki, J. Nucl. Med. 42, 1551 (2001).

20. T. Tohma, S. Okazumi, H. Makino, A. Cho, R. Mochizuki, K. Shuto, H. Kudo, K. Matsubara, H. Gunji, H. Matsubara, and T. Ochiai, Diseas. Esoph. 18, 185 (2005). DOI: 10.1111/j.1442-2050.2005.00489.x.

21. V. Kapoor, B. M. Mccook, and F. S. Torok, RadioGraphics 24, 523 (2004). DOI: 10.1148/rg.242025724.

22. K. Kubota, H. Watanabe, Y. Murata, M. Yukihiro, K. Ito, M. Morooka, R. Minamimoto, A. Hori, and H. Shibuya, Nucl. Med. Bio. 38, 347 (2011). DOI: 10.1016/j.nucmedbio.2010.09.004.

23. M. Eskian, A. Alavi, M. Khorasanizadeh, B. L. Viglianti, H. Jacobsson, T. D. Barwick, A. Meysamie, S. K. Yi, S. Iwano, B. Bybel, F. Caobelli, F. Lococo, J. Gea, A. Sancho-Muñoz, J. Schildt, E. Tatcı, C. Lapa, G. Keramida, M. Peters, R. R. Boktor, J. John, A. G. Pitman, T. Mazurek, and N. Rezaei, European J. Nucl. Med. Mol. Imaging 46, 224 (2019). DOI: 10.1007/s00259-018-4194-x.

24. M. Kosuth, S. A. Mason, and E. V. Wattenberg, PLOS ONE 13, e0194970 (2018). DOI: 10.1371/journal.pone.0194970.

25. G. Liu, Y. Hu, Y. Zhao, H. Yu, P. Hu, and H. Shi, Medicine 97, e0699 (2018). DOI: 10.1097/MD.0000000000010699.

26. R. L. Webb, E. Landau, D. Klein, J. Dipoce, D. Volkin, J. Belman, N. Voutsinas, and A. Brenner, Nucl. Med. Commun. 36, 717 (2015). DOI: 10.1097/MNM.0000000000000319.

27. S.-C. Huang, Nucl. Med. Bio. 27, 643 (2000). DOI: 10.1016/S0969-8051(00)00155-4.

28. C. Sprinz, M. Zanon, S. Altmayer, G. Watte, K. Irion, E. Marchiori, and B. Hochhegger, Sci. Rep. 8, 2126 (2018). DOI: 10.1038/s41598-018-20529-4.

Similar Articles

You may also start an advanced similarity search for this article.