Improving Radio Signal from Baghdad University Radio Telescope Using the Savitzky-Golay Filter

Main Article Content

Zahraa A. Hussein
https://orcid.org/0009-0009-9887-3988
Hareth S. Mahdi

Abstract

Astronomical radio observations from a small radio telescope suffer from various types of noise. Hence, astronomers continuously search for new techniques to eliminate or reduce such noise and obtain more accurate results. This research investigates the impact of implementing the Savitzky-Golay filter on enhancing radio observation signals retrieved from the Baghdad University Radio Telescope (BURT). Observations from BURT were carried out for different Galactic coordinates, and then a MATLAB code was written and used to implement the Savitzky-Golay filter for the collected data. This process provides an assessment of the ability of the filter to reduce noise and improve the quality of the signal. The results of this research clearly showed that applying the Savitzky-Golay filter reduces the noise and enhances the signal of astronomical radio observations. However, the filter should be used appropriately to preserve the original features of the signal. In conclusion, the filter is considered an efficient tool for enhancing the radio signal by reducing the noise and smoothing the signal. Therefore, the filter provides a substantial contribution and improvement to the field of radio astronomy.

Article Details

How to Cite
1.
Improving Radio Signal from Baghdad University Radio Telescope Using the Savitzky-Golay Filter. IJP [Internet]. 2024 Sep. 1 [cited 2024 Sep. 1];22(3):60-6. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1274
Section
Articles

How to Cite

1.
Improving Radio Signal from Baghdad University Radio Telescope Using the Savitzky-Golay Filter. IJP [Internet]. 2024 Sep. 1 [cited 2024 Sep. 1];22(3):60-6. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1274

References

B. F. Burke, F. Graham-Smith, and P. N. Wilkinson, An Introduction to Radio Astronomy (New York, USA, Cambridge University Press, 2019).

M. R. Hoobi and K. M. Abood, Iraqi J. Sci. 60, 171 (2019). DOI: 10.24996/ijs.2019.60.1.18.

A. A. Hameed and K. M. Abood, Iraqi J. Sci. 62, 4537 (2021). DOI: 10.24996/ijs.2021.62.11(SI).33.

U. E. Jallod and K. M. Abood, Prog. Electromag. Res.Lett. 85, 17 (2019). DOI: 10.2528/PIERL19041009.

U. E. Jallod, L. T. Ali, H. S. Mahdi, and K. M. Abood, Karbala Int. J. Mod. Sci. 9, 9 (2023). DOI: 10.33640/2405-609X.3306.

U. E. Jallod and K. M. Abood, AIP Conference Proceedings (AIP Publishing, 2019). p. 020035.

H. K. Ahmed and K. M. Abood, AIP Conference Proceedings (Metz, Grand-Est, France AIP Publishing, 2023) p. 020003.

Y. D. Takahashi, P. A. Ade, D. Barkats, J. O. Battle, E. M. Bierman, J. J. Bock, H. C. Chiang, C. D. Dowell, L. Duband, and E. F. Hivon, Astrophys. J. 711, 1141 (2010). DOI: 10.1088/0004-637X/711/2/1141.

K. Lang, Astrophysical Formulae: Radiation, Gas Processes and High Energy Astrophysics/Space, Time, Matter and Cosmology (USA, Springer Science & Business Media, 2006).

A. J. Kałka and A. M. Turek, Appl. Spect. 77, 426 (2023). DOI: 10.1177/00037028231154278.

G. Wood, Exer. Sport Sci. Rev. 10, 308 (1982). DOI: 10.1249/00003677-198201000-00010.

J. Diehl, J. Knollmüller, and O. Schulz, Nuc. Instrum. Meth. Phys. Res. S. A Acceler. Spectromet. Detect. Associ. Equip. 1063, 169259 (2024). DOI: 10.1016/j.nima.2024.169259.

J. Chen, P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, Rem. Sens. Envir. 91, 332 (2004). DOI: 10.1016/j.rse.2004.03.014.

A. Savitzky and M. J. Golay, Analyt. Chem. 36, 1627 (1964). DOI: 10.1021/ac60214a047.

A. H. Fisher, E. T. Whittaker, and G. R. Blackie, J. American Statist. Associ. 19, 413 (1924). DOI: 10.2307/2277387.

Ç. Candan and H. Inan, Sig. Proces. 104, 203 (2014). DOI: 10.1016/j.sigpro.2014.04.016.

J. Steinier, Y. Termonia, and J. Deltour, Analyt. Chem. 44, 1906 (1972). DOI: 10.1021/ac60319a045.

W. K. Chen, The Electrical Engineering Handbook (USA, Elsevier, 2004).

A. Vyas, S. Yu, J. Paik, A. Vyas, S. Yu, and J. J. Paik, Mult. Transf. Appl. Image Proces., 3 (2018). DOI: 10.1007/978-981-10-7272-7_1.

R. Jardim and F. Morgado-Dias, Microproces. Microsys. 74, 103006 (2020). DOI: 10.1016/j.micpro.2020.103006.

J. Luo, K. Ying, P. He, and J. Bai, Dig. Sig. Proces. 15, 122 (2005). DOI: 10.1016/j.dsp.2004.09.008.

E. Ziegel, Technometrics 29, 501 (1987). DOI: 10.1080/00401706.1987.10488304.

R. W. Schafer, IEEE Sig. Proces. Mag. 28, 111 (2011). DOI: 10.1109/MSP.2011.941097.

D. Acharya, A. Rani, S. Agarwal, and V. Singh, Perspec. Sci. 8, 677 (2016). DOI: 10.1016/j.pisc.2016.06.056.

Q. Quan and K.-Y. Cai, Dig. Sig. Proces. 22, 238 (2012). DOI: 10.1016/j.dsp.2011.11.004.

S. R. Krishnan and C. S. Seelamantula, IEEE Transact. Sig. Proces. 61, 380 (2012). DOI: 10.1109/TSP.2012.2225055.

P. J. Ochieng, Z. Maróti, J. Dombi, M. Krész, J. Békési, and T. Kalmár, Information 14, 128 (2023). DOI: 10.3390/info14020128.

C. Ruffin and R. L. King, IEEE 1999 International Geoscience and Remote Sensing Symposium (Hamburg, Germany IEEE, 1999). p. 756.

A. R. Thompson, J. M. Moran, and G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (USA, Springer Nature, 2017).

J. N. Chengalur, J. Astro. Instrument. 6, 1780002 (2017). DOI: 10.1142/S2251171717800022.

A.-J. Van Der Veen, A. Leshem, and A.-J. Boonstra, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal (Barcelona, Spain IEEE, 2004). p. 1.

Z.-M. Zhang, S. Chen, and Y.-Z. Liang, Analyst 135, 1138 (2010). DOI: 10.1039/b922045c.

H. Azami, K. Mohammadi, and B. Bozorgtabar, J. Sig. Info. Proces. 3, 39 (2012). DOI: 10.4236/jsip.2012.31006.

H. S. Mahdi, Iraqi J. Sci. 64, 2627 (2023). DOI: 10.24996/ijs.2023.64.5.43.

I. D. Rogan and O. R. Pronić-Rančić, 2021 56th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST) (Sozopol, Bulgaria IEEE, 2021). p. 123.

J. Luo, K. Ying, and J. Bai, Sig. Proces. 85, 1429 (2005). DOI: 10.1016/j.sigpro.2005.02.002.

L. D. Enochson and R. K. Otnes, SAE Transactions 74, 730 (1966). DOI: 10.4271/650821.

A. S. Gomes, A. Halder, and M. A. Hossain, Asian J. Appl. Sci. Tech. 7, 158 (2023). DOI: 10.38177/ajast.2023.7115.

A. V. Oppenheim, Papers on Digital Signal Processing (USA, The MIT Press, 1969).

S. S. Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, Handbook of Signal Processing Systems (Cham, Switzerland, Springer, 2013).

S. L. Marple Jr, J. Acoust. Soc. Am. 86, 2043 (1987). DOI: 10.1121/1.398548.

K. Baba, L. Bahi, and L.Ouadif, Geofís. Int. 53, 399 (2014). DOI: 10.1016/S0016-7169(14)70074-1.

A. John, J. Sadasivan, and C. S. Seelamantula, IEEE Transac. Sig. Proces. 69, 5021 (2021). DOI: 10.1109/TSP.2021.3106450.

S. K. Sunori, M. Manu, A. Mittal, and P. Juneja, 2023 International Conference on Innovative Data Communication Technologies and Application (ICIDCA) (IEEE, 2023). p. 888.

B. M. Schettino, C. A. Duque, and P. M. Silveira, IEEE Transac. Pow. Deliv. 31, 1400 (2016). DOI: 10.1109/TPWRD.2016.2521327.

Y. Liu, B. Dang, Y. Li, H. Lin, and H. Ma, Acta Geophys. 64, 101 (2016). DOI: 10.1515/acgeo-2015-0062.

S. Hargittai, Computers in Cardiology (Lyon, France IEEE, 2005). p. 763.

S. R. Krishnan, M. M.-. Doss, and C. S. Seelamantula, IEEE Sig. Proces. Let. 20, 281 (2013).

DOI: 10.1109/LSP.2013.2244593.

M. Schmid, D. Rath, and U. Diebold, ACS Measur. Sci. Au 2, 185 (2022). DOI: 10.1021/acsmeasuresciau.1c00054.

H. Yang, Y. Cheng, and G. Li, Alexandria Eng. J. 60, 3379 (2021). DOI: 10.1016/j.aej.2021.01.055.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)