Effects of Hydrogen Peroxide Concentration on Properties of Black Silicon Fabricated by Two-Step Silver-Assisted Wet Chemical Etching for Photovoltaics

Main Article Content

Auwal Abdulkadir
Mohd Zamir Pakhuruddin


Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O2 at 5 M HF. On the b-Si, nanowires with 250-950 nm heights and an average diameter of 150-280 nm are obtained. Low concentrations of H2O2 result in denser nanowires with an average length of 900-950 nm and diameters of about 150-190 nm. The b-Si exhibit outstanding broadband antireflection due to the refractive index grading effect represented as WAR within the 300-1100 nm wavelength region. B-Si obtained after etching in a solution with 0.62 M concentration of H2O2, demonstrate WAR of 7.5%. WAR of 7.5% results in an absorption of up to 95.5 % at a wavelength of 600 nm. The enhanced broadband light absorption yields maximum potential short-circuit current density (Jsc(max)) of up to 38.2 mA/cm2, or 45.2% enhancement compared to the planar c-Si reference.

Article Details

How to Cite
Abdulkadir A, Pakhuruddin MZ. Effects of Hydrogen Peroxide Concentration on Properties of Black Silicon Fabricated by Two-Step Silver-Assisted Wet Chemical Etching for Photovoltaics. IJP [Internet]. 2022 Jun. 1 [cited 2022 Jun. 29];20(2):11-25. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/985


ITRPV, Trends and Challenges in c-Si PV - an update of the ITRPV 11 the edition (incl. maturity report). 2021: pp. 1-3.

Battaglia C., Cuevas A., and De Wolf S., High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environmental Science, 2016. 9(5): pp. 1552-1576. DOI: https://doi.org/10.1039/C5EE03380B

Zhuang Y., Zhong S., Huang Z., and Shen W., Versatile strategies for improving the performance of diamond wire sawn mc-Si solar cells. Solar Energy Materials Solar Cells, 2016. 153: pp. 18-24. DOI: https://doi.org/10.1016/j.solmat.2016.04.014

Otto M., Algasinger M., Branz H., Gesemann B., Gimpel T., Füchsel K., Käsebier T., Kontermann S., Koynov S., and Li X., Black silicon photovoltaics. Black silicon photovoltaics, 2015. 3(2): pp. 147-164. DOI: https://doi.org/10.1002/adom.201400395

Wang Y., Yang L., Liu Y., Mei Z., Chen W., Li J., Liang H., Kuznetsov A., and Xiaolong D., Maskless inverted pyramid texturization of silicon. Scientific reports, 2015. 5(1): pp. 1-6. DOI: https://doi.org/10.1038/srep10843

Vazsonyi E., De Clercq K., Einhaus R., Van Kerschaver E., Said K., Poortmans J., Szlufcik J., and Nijs J., Improved anisotropic etching process for industrial texturing of silicon solar cells. Solar energy materials solar cells, 1999. 57(2): pp. 179-188. DOI: https://doi.org/10.1016/S0927-0248(98)00180-9

Da Y., Liu X., Xuan Y., and Li Q., Photon management effects of hybrid nanostructures/microstructures for organic‐silicon heterojunction solar cells. International Journal of Energy Research 2018. 42(15): pp. 4875-4890. DOI: https://doi.org/10.1002/er.4249

To W.-K., Tsang C.-H., Li H.-H., and Huang Z., Fabrication of n-type mesoporous silicon nanowires by one-step etching. Nano letters 2011. 11(12): pp. 5252-5258. DOI: https://doi.org/10.1021/nl202674t

Chen K., Zha J., Hu F., Ye X., Zou S., Vähänissi V., Pearce J.M., Savin H., and Su X., MACE nano-texture process applicable for both single-and multi-crystalline diamond-wire sawn Si solar cells. Solar Energy Materials Solar Cells, 2019. 191: pp. 1-8. DOI: https://doi.org/10.1016/j.solmat.2018.10.015

Oh J., Yuan H.-C., and Branz H.M., An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature nanotechnology 2012. 7(11): pp. 743-748. DOI: https://doi.org/10.1038/nnano.2012.166

Srivastava S.K., Kumar D., Sharma M., Kumar R., and Singh P., Silver catalyzed nano-texturing of silicon surfaces for solar cell applications. Solar Energy Materials Solar Cells, 2012. 100: pp. 33-38. DOI: https://doi.org/10.1016/j.solmat.2011.05.003

Aca-López V., Quiroga-González E., Gómez-Barojas E., Światowska J., and Luna-López J.A., Effects of the doping level in the production of silicon nanowalls by metal assisted chemical etching. Materials Science in Semiconductor Processing 2020. 118: pp. 1-15. DOI: https://doi.org/10.1016/j.mssp.2020.105206

Abdulkadir A., bin Abdul Aziz A., and Pakhuruddin M.Z., Optimization of etching time for broadband absorption enhancement in black silicon fabricated by one-step electroless silver-assisted wet chemical etching. Optik 2019. 187: pp. 74-80. DOI: https://doi.org/10.1016/j.ijleo.2019.05.019

Li X., Gao Z., Zhang D., Tao K., Jia R., Jiang S., Wang B., Ji Z., Jin Z., and Liu X., High-efficiency multi-crystalline black silicon solar cells achieved by additive assisted Ag-MACE. Solar Energy Materials Solar Cells, 2020. 195: pp. 176-184. DOI: https://doi.org/10.1016/j.solener.2019.11.045

Behera A.K., Viswanath R., Lakshmanan C., Mathews T., and Kamruddin M., Synthesis of silicon nanowalls exhibiting excellent antireflectivity and near super-hydrophobicity. Nano-Structures Nano-Objects 2020. 21: pp. 1-7. DOI: https://doi.org/10.1016/j.nanoso.2020.100424

Liu Y., Ji G., Wang J., Liang X., Zuo Z., and Shi Y., Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration. Nanoscale research letters 2012. 7(1): pp. 1-9. DOI: https://doi.org/10.1186/1556-276X-7-663

Li S., Ma W., Chen X., Xie K., Li Y., He X., Yang X., and Lei Y., Structure and antireflection properties of SiNWs arrays form mc-Si wafer through Ag-catalyzed chemical etching. Applied Surface Science 2016. 369: pp. 232-240. DOI: https://doi.org/10.1016/j.apsusc.2016.02.028

Gonchar K.A., Moiseev D.V., Bozhev I.V., and Osminkina L.A., Influence of H2O2 concentration on the structural and photoluminescent properties of porous silicon nanowires fabricated by metal-assisted chemical etching. Materials Science in Semiconductor Processing, 2021. 125: pp. 1-6. DOI: https://doi.org/10.1016/j.mssp.2020.105644

Kern W., The evolution of silicon wafer cleaning technology. Journal of the Electrochemical Society 1990. 137(6): pp. 1887-1892. DOI: https://doi.org/10.1149/1.2086825

Noor N.A.M., Mohamad S.K., Hamil S.S., Devarajan M., and Pakhuruddin M.Z., Effects of annealing temperature towards surface morphological and optical properties of black silicon fabricated by silver-assisted chemical etching. Materials Science in Semiconductor Processing, 2019. 91: pp. 167-173. DOI: https://doi.org/10.1016/j.mssp.2018.11.006

Abdulkadir A., Aziz A.A., and Pakhuruddin M.Z., Impact of micro-texturization on hybrid micro/nano-textured surface for enhanced broadband light absorption in crystalline silicon for application in photovoltaics. Materials Science in Semiconductor Processing, 2020. 105: pp. 1-8. DOI: https://doi.org/10.1016/j.mssp.2019.104728

Pakhuruddin M.Z., Dore J., Huang J., and Varlamov S., Effects of front and rear texturing on absorption enhancement in laser-crystallized silicon thin-films on glass. Japanese Journal of Applied Physics 2015. 54(8S1): pp. 1-7. DOI: https://doi.org/10.7567/JJAP.54.08KB04

Abouda-Lachiheb M., Nafie N., and Bouaicha M., The dual role of silver during silicon etching in HF solution. Nanoscale research letters, 2012. 7(1): pp. 1-5. DOI: https://doi.org/10.1186/1556-276X-7-455

Huang Z., Geyer N., Werner P., De Boor J., and Gösele U., Metal‐assisted chemical etching of silicon: a review: in memory of Prof. Ulrich Gösele. Advanced materials 2011. 23(2): pp. 285-308. DOI: https://doi.org/10.1002/adma.201001784

Chong T., Weber K., Booker K., and Blakers A., Characterization of MAE-textured nanoporous silicon for solar cells application: Optics and surface passivation. IEEE Journal of Photovoltaics 2014. 4(5): pp. 1235-1242. DOI: https://doi.org/10.1109/JPHOTOV.2014.2333871

He X., Li S., Ma W., Ding Z., Yu J., Qin B., Yang J., Zou Y., and Qiu J., A simple and low-cost chemical etching method for controllable fabrication of large-scale kinked silicon nanowires. Materials Letters 2017. 196: pp. 269-272. DOI: https://doi.org/10.1016/j.matlet.2017.03.131

Ma S., Liu S., Xu Q., Xu J., Lu R., Liu Y., and Zhong Z., A theoretical study on the optical properties of black silicon. AIP Advances 2018. 8(3): pp. 1-8. DOI: https://doi.org/10.1063/1.5018642

Plakhotnyuk M.M., Gaudig M., Davidsen R.S., Lindhard J.M., Hirsch J., Lausch D., Schmidt M.S., Stamate E., and Hansen O., Low surface damage dry etched black silicon. Journal of Applied Physics, 2017. 122(14): pp. 1-9. DOI: https://doi.org/10.1063/1.4993425

Branz H.M., Yost V.E., Ward S., Jones K.M., To B., and Stradins P., Nanostructured black silicon and the optical reflectance of graded-density surfaces. Applied Physics Letters, 2009. 94(23): pp. 88-91. DOI: https://doi.org/10.1063/1.3152244

Chai J.-H., Wong B.T., and Juodkazis S., Black-silicon-assisted photovoltaic cells for better conversion efficiencies: a review on recent research and development efforts. Materials Today Energy 2020. 18: pp. 1-48. DOI: https://doi.org/10.1016/j.mtener.2020.100539