Contribution to the Development of Nano-Composite Materials Based on ZnO and Polymethyl Methacrylate Structural and Optical Study
Main Article Content
Abstract
In this study, thin films of pure and aluminum (Al)-doped zinc oxide/polymethyl methacrylate (ZnO/PMMA) with two different amounts (5% and 7%) using the sol-gel and spin coating methods were created and then heated at two temperatures (450 and 750°C). Many characteristics were used to analyze the resulting samples, including X-ray diffraction (XRD), UV-visible, and infrared (IR) absorption spectroscopy. The X-ray diffraction analysis of the samples indicated that they formed a hexagonal structure of ZnO known as wurtzite, with a preferred direction labelled as (101). UV-visible analysis of the specimens' optical characteristics has helped calculate the gap energy using the Tauc method. The energy value is 4.12 eV. The optical characteristics of the samples were analyzed by the Fourier Transform Infrared (FTIR), which shows the presence of absorption peaks attributed to the existence of the new phase that cannot be observed through the X-rays, which is a phase of spinel zinc aluminate (ZnAl2O4).
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. J. A. Sans, A. Segura, M. Mollar, and B. Mar, Thin Solid Films, 453 , 251 (2004).
2. Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, J. Crystal Growth, 221, 431 (2000).
3. F. Paraguay, D. W. Estrada, L.D.R. Acosta, N.E. Andrade, and M. Miki-Yoshida, Thin Solid Films, 350, 192 (1999).
4. M .N. Kamalasanan and S. Chandra, Thin Solid Films 288, 112 (1996).
5. M. De la Olvera, A. Madonado, R. Asomoz, and M. Melendez-Lira, Sol. Energy Mater and Solar Cells, 41, 61 (2002).
6. S. Kuo, W. Chen, F. Lai, C. Cheng, H. Kuo, S. Wang, and W. Hsieh, J. Cristal Growth 287, 78 (2006).
7. H. Yang, J. S. Lee, S. Bae, and J. H Hwang, Current Applied Physics, 9, 797 (2009).
8. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, Journal of Applied Physics, 98(4), 041301 (2005). DOI: 10.1063/1.1992666.
9. C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, Thin Solid Films, 201, 97 (1991).
10. A. Elkaiem, MSc thesis, University of Constantine, 2015.
11. G.A. Addle, Egypt J. Sol., 23(2), (2000).
12. F. Melle Lakhdari, MSc thesis, University of sciences and technology of Mohamed Boudiaf Oran, 2008.
13. B. H. Nasir and M. I. Manssor, Rafidain Journal of Science, 23(6), 163 (2012) DOI: 1033899/rjs.2012.59641
14. K. F. Konan, B. Hartiti, B. Aka, A. Ridah, K. Dakhsi, Y. Arba, and P. Thevenin, Afrique Science, 06(1), 29 (2010).
15. Z. J. Shanan, S. M. Hadi, and S. K. Shanshool, Baghdad Sci. J., 15, 0211 (2018). DOI: 10.21123/bsj.2018.15.2.0211.
16. S. Amara, and M. Bouafia, Int. J. Nanoparticles, 6(2), (2013).
17. N. Talebian, M. R. Nilforoushan, and E. B. Zargar, Appl. Surf. Sci., 258, 547 (2011). DOI: 10.1016/j.apsusc.2011.08.070.
18. F. Urbach, Phys. Rev. 92, 1324 (1953).
19. H. Habieb and N. E. Hamdadou, Communication Science & technology 21. (2019).
20. Z. M. Gibbs, A. LaLonde, and G. J. Snyder, New Journal of Physics, 15, 075020 (2013). doi:10.1088/1367-2630/15/7/075020
21. J. C. Manifacier, J. Gasiot, and J. P. Fillard, J. Phys., E 9, 1002 (1976). DOI:10.1088/0022-3735/9/11/032.
22. T. Srinivasulu, K. Saritha, and K. T. Ramakrishna Reddy, Modern Electronic Materials, S2452-1779(17), 30018-X. (2017). DOI: http://dx.doi.org/10.1016/j.moem.2017.07.001.
23. E. R. Shaabana, I. S. Yahiab, and E. G. El-Metwally, Acta Physica Polonica A, 121, (2012).
24. S. Ilican, M. Caglar, and Y. Caglar, Materials Science-Poland, 25 (3), (2007).
25. A. Chelouche, A. Aksas, D. Djoadi, J. Elghoul, L. Elmir, and S. Saoudi, in International Conference on Laser and Applications, UKM Ouargla, 2009.