Design of HHO Cell for Green Hydrogen Production

Main Article Content

Dhuha Ali Moaya
https://orcid.org/0009-0006-1812-4951
Moayad Khalil Ibrahim
Haleemah Jaber Mohammed

Abstract

Global warming, driven by scientific and technological progress and rising environmental pollution, has intensified the need for alternative renewable energy sources like hydrogen. This study focused on designing a hydrogen-hydrogen-oxygen (HHO) cell using primary materials, where stainless steel electrodes (10 cm diameter) were coated with carbon nanotubes (CNTs) via electrochemical deposition. The CNTs were synthesized from potato peel waste, demonstrating an eco-friendly approach to nanomaterial production. Structural and morphological analyses of the CNTs were conducted using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD), confirming their high surface area and crystalline structure. The research also investigated the impact of electrolyte concentration (KOH) on hydrogen production efficiency. By varying electrolyte parameters and applied current, the study monitored gas output per unit time, revealing a significant increase in H₂ and O₂ flow rates with CNT-coated electrodes. The enhanced performance was attributed to the electrodes' improved conductivity, corrosion resistance, and catalytic activity. These findings highlight the potential of nanotechnology in optimizing renewable energy systems, offering a sustainable solution for green hydrogen production.

Received: Dec. 23, 2024 Revised: May, 03, 2025 Accepted: May, 06, 2025

Article Details

Section

Articles

How to Cite

1.
Moaya DA, Ibrahim MK, Mohammed HJ. Design of HHO Cell for Green Hydrogen Production. IJP [Internet]. 2025 Dec. 1 [cited 2025 Dec. 1];23(4):169-77. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1413

References

1. M. Haider, S. Hussain, H. Farid, U. Shahid, A. Ahmed, and N. Abbas, Pakistan Journal of Engineering and Technology, PakJET Multidisciplinary & Peer Reviewed, 4, 73, (2021). https://doi.org/10.51846/pakjet.v4i2.

2. S. Pamford, K. Essuman, A. Nyamful, V. Y. Agbodemegbe, and S. K. Debrah, International Journal of Engineering Science Invention (IJESI), 8, 01, May, (2019). https://www.ijesi.org/papers/Vol%288%29i5/Series-2/A0805020107.pdf?utm_source=chatgpt.com.

3. K. C. Divya and J. Østergaard, Electric Power Systems Research, Elsevier, 79(4), 511, (2009). https://doi.org/10.1016/j.epsr.2008.09.017.

4. X. Zheng, S. Zhang, X. Zheng, Z. Zhuang, M. Gao, Y. Liu, and W. Sun, Adva. Mate, 37, 2502127, (2025).‏ https://doi.org/10.1002/adma.202502127.

5. C. Akl, J. Dgheim, and N. El Hajj, Sustainability, 17, 3811, (2025). ‏https://doi.org/10.3390/su17093811.

6. A. A. Ingle, International Research Journal of Engineering and Technology (IRJET), 8, 489 (2021).

7. H. Enshasy, Q. Abu Al-Haija, H. Al-Amri, M. Al-Nashri, and S. Al-Muhaisen, Acta Electronica Malaysia (AEM), 3, 09, (2019). http://doi.org/10.26480/aem.02.2019.09.15.

8. Z. Su, P. Ding, W. Su, X. Li, Y. Li, and Y. Wang, Frontiers in Endocrinology, 15, 1386021, (2024).‏ https://doi.org/10.3389/fendo.2024.1386021.

9. A. Z. Abdulameer, Z. Buntat, R. Naveed Arshad, and Z. Nawawi, International Journal of Recent Technology and Engineering (IJRTE), 8 , 490, July, (2019).

10. H. M. Enshasy, Q. Abu Al-Haija, H. Al-Amri, M. Al-Nashri, S. Al-Muhaisen, and M. Al-Tarayrah, WSEAS Transactions on Systems, (2020). https://doi.org/10.37394/23202.2020.19.35 .

11. H. J. Mohammed and N. A. Ali, Univ. Thi-Qar J. Sci. 7, 106 (2020). https://doi.org/10.32792/utq/utjsci/v11i2 .

12. B. Sharma, S. Manna, V. Saxena, P. Raghuvanshi, M. Alsharif, and M. Kim, Scien. Reports, 15, 661, (2025). https://doi.org/10.1038/s41598-024-84296-1.

13. ‏ M. Streblau, et al., 18th International Symposium on Electrical Apparatus & Technologies, 1, (2014). http://dx.doi.org/10.1109/SIELA.2014.6871898 .

14. N. Afgan and A. Veziroglu, Sustainable resilience of hydrogen energy system, International Journal of Hydrogen Energy, 37, 5461, (2012). http://dx.doi.org/10.1016/j.ijhydene.2011.04.201.

15. J. Barton and R. Gammon, Journal of Power Sources, 195, 8222, (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.12.100.

16. W. Lee, B. Hawkin, D. M. Day, and D. C. Reicosky, Energy & Environmental Science, 3, 1695, (2010). DOI: https://doi.org/10.1039/C004561F.

17. V. Mohanraj and Y. Chen, “Tropical Journal of Pharmaceutical Research, 5, 561, (2006). https://doi.org/10.4314/tjpr.v5i1.14634 .

18. O. S. Nille and A. H. Gore, Valorization of Agri-Food Wastes and By-Products, (2021). https://doi.org/10.1016/B978-0-12-824044-1.00046-5.

19. V. Sharma, S. Kumar, I. Kainthla, M. Shandilya, and S. Thakur, Waste Derived Carbon Nanomaterials 2, 103, (2025). DOI: 10.1021/bk-2025-1495.ch006.

20. Y. Yu, L. Li, E. Liu, X. Han, J. Wang, Y. Xie, and C. Lu, Carbon, 187, 97, (2022).‏ https://doi.org/10.1016/j.carbon.2021.10.071.

21. M. Hossain, A. Roy, M. Molah, and M. Uddin, Springer Plus 3(1) 134, (2014). https://doi.org/10.1186/2193-1801-3-73.

22. E. Duraia, M. Opoku, and G. Beall, Scientific Reports, 14(1), 16405, (2024). https://doi.org/10.1038/s41598-024-65893-6.

23. J. Dore, A. Burian, and S. Tomtta, Acta Physica Polonica, 98(5), 457 (2000). https://doi.org/10.12693/APhysPolA.98.457.

24. I. Dincer, and M. Agelin-Chaab, J. of Power Sour. 632, 236326, (2025).‏ https://doi.org/10.1016/j.jpowsour.2025.236326.

25. A. Ursua, L. M. Gandia, and P. Sanchis, Proceedings of the IEEE, 100, 410, (2011). https://doi.org/10.1109/JPROC.2011.2156750.

26. K. Zeng and D. Zhang, Progress in Energy and Combustion Science, 36, 307, (2010). https://doi.org/10.1016/j.pecs.2009.11.002.

27. M. Allah, A. Hariri, and K. Mohamed, J. of Adva. Rese. in Fluid Mech. and Ther. Scie., 101, 45 (2022). https://doi.org/10.37934/arfmts.101.1.4558.

28. X. Bi, G. Wang, D. Cui, X. Qu, S. Shi, D. Yu, and Y. Ji, Fuel, 380, 133209. (2025).‏ https://doi.org/10.1016/j.fuel.2024.133209.

29. A. D. Franklin, M. C. Hersam, and H.-S. P. Wong, Science, 378, 726, (2022). https://doi.org/10.1126/science.abp8278.

30. K. Rani, G. Singh, S. Narwal, B. Chopra, and A. Dhingra, Current Nanomedicine, 15, 50, (2025).‏ https://doi.org/10.2174/0124681873294822240517073406.

31. Z. K. Abdulrahman, A. H. Al-Mamoori, and T. Y. Al-Doori, Int. J. Hydrogen Energy, 48, 27891 (2023). https://doi.org/10.1016/j.ijhydene.2023.06.112.

32. N. A. Ali, B. T. Chied, and H. J. Mohammed, in Proceedings of the Fourth Conference for Low Dimensional Materials and its Applications (Iraqi Journal of Science, Special Issue, 2018).

33. H. J. Mohammed, N. A. Ali, and B. H. Jwad, IOP Publishing, Journal of Physics: Conference Series, 1660, 012046 (2020). http://dx.doi.org/10.1088/1742-6596/1660/1/012046.

34. H. J. Mohammed and N. A. Ali, AIP Conference Proceedings, 2144, 030002, (2019). https://doi.org/10.1063/1.5123072.

Similar Articles

You may also start an advanced similarity search for this article.