Optimized Characteristics of Polyvinyl Alcohol Films Decorated with Silver Nanoparticles Synthesized via Chemical Reduction Method

Main Article Content

Yaqeen T. Alwan
Firas J. Kadhim

Abstract

This research shows how to prepare polyvinyl alcohol (PVA) films with silver nanoparticles and how different amounts of these nanoparticles affect the films' properties. The silver nanoparticles (AgNPs), featuring a uniform spherical shape, were synthesised using the chemical reduction method. The concentration of AgNPs and the amount of the reducing agent were found to influence the structural and optical characteristics of the prepared films. Higher volumes of the reducing agent have resulted in the formation of larger silver nanoparticles. These factors affected the size of the silver nanoparticles and the specific absorption peak, which was between 420 and 435 nm, with the nanoparticles measuring between 20 and 32 nm in size. The UV-visible spectroscopy of PVA film samples with silver nanoparticles showed that the silver nanoparticles had a peak absorption in the 420-435 nm range. The FTIR spectroscopy showed that the silver nanoparticles do not chemically attach to the PVA structure, but instead, they fit into the matrix as small flaws. Still, they integrate into the matrix as structural imperfections. The present work aims to study the structural behaviour and particle size effect of Ag NPs dispersed in a polymer network and select the best conditions for synthesizing such nanostructures.

Received: Aug.09, 2024 Revised: Dec. 13, 2024 Accepted: Dec 28, 2024  

Article Details

Section

Articles

How to Cite

1.
Alwan YT, Kadhim FJ. Optimized Characteristics of Polyvinyl Alcohol Films Decorated with Silver Nanoparticles Synthesized via Chemical Reduction Method. IJP [Internet]. 2025 Jun. 1 [cited 2025 Jul. 15];23(2):99-105. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1355

References

1. T. Klaus, R. Joerger, E. Olsson, and C.-G. Granqvist, Proc. Natl. Acad. Sci. 96, 13611 (1999). DOI: 10.1073/pnas.96.24.13611.

2. P. Kumari, Advanced and Innovative Approaches of Environmental Biotechnology in Industrial Wastewater Treatment (Singapore, Springer Nature 2023).

3. R. K. Tekade, The Future of Pharmaceutical Product Development and Research (London, UK, Elsevier, 2020), p.v.

4. K. Namsheer and C. S. Rout, RSC Adv. 11, 5659 (2021). DOI: 10.1039/D0RA07800J.

5. N. P. Nguyen, N. T. Dang, L. Doan, and T. T. Nguyen, Processes 11, 2617 (2023). DOI: 10.3390/pr11092617.

6. T. A. Al-Mashhadani, F. J. Kadhim, and N. a. H. Hashim, Iraqi J. Appl. Phys. 20, 465 (2024).

7. T. Xiao, J. Huang, D. Wang, T. Meng, and X. Yang, Talanta 206, 120210 (2020). DOI: 10.1016/j.talanta.2019.120210.

8. K. Čubová and V. Čuba, Rad. Phys. Chem. 169, 108774 (2020). DOI: 10.1016/j.radphyschem.2020.108774.

9. S. K. Gupta and Y. Mao, Prog. Mat. Sci. 117, 100734 (2021). DOI: 10.1016/j.pmatsci.2020.100734.

10. T. Ghodselahi and M. A. Vesaghi, Phys. B Cond. Matt. 406, 2678 (2011). DOI: 10.1016/j.physb.2011.03.082.

11. L. Mahmudin, D. Darwis, E. Suharyadi, A. B. S. Utomo, and K. Abraha, J. Phys. Conf. Ser. 1763, 012064 (2021). DOI: 10.1088/1742-6596/1763/1/012064.

12. P. Slepička, N. Slepičková Kasálková, J. Siegel, Z. Kolská, and V. Švorčík Methods of Gold and Silver Nanoparticles Preparation. Materials, 2020. 13, 1 DOI: |.

13. S. P. A. Osorio, V. a. G. Rivera, L. a. O. Nunes, E. Marega, D. Manzani, and Y. Messaddeq, Plasmonics 7, 53 (2012). DOI: 10.1007/s11468-011-9275-7.

14. M. W. Juma, Z. Birech, N. M. Mwenze, A. M. Ondieki, M. Maaza, and S. D. Mokhotjwa, Sci. Rep. 14, 5721 (2024). DOI: 10.1038/s41598-024-56456-w.

15. T. Som and B. Karmakar, Appl. Surf. Sci. 255, 9447 (2009). DOI: 10.1016/j.apsusc.2009.07.053.

16. S. Mahendia, A. K. Tomar, and S. Kumar, J. All. Comp. 508, 406 (2010). DOI: 10.1016/j.jallcom.2010.08.075.

17. N. Singh and P. K. Khanna, Mat. Chem. Phys. 104, 367 (2007). DOI: 10.1016/j.matchemphys.2007.03.026.

18. P. K. Khanna, R. Gokhale, V. V. V. S. Subbarao, A. K. Vishwanath, B. K. Das, and C. V. V. Satyanarayana, Mat. Chem. Phys. 92, 229 (2005). DOI: 10.1016/j.matchemphys.2005.01.016.

19. A. Nimrodh Ananth, S. Umapathy, J. Sophia, T. Mathavan, and D. Mangalaraj, Appl. Nanosci. 1, 87 (2011). DOI: 10.1007/s13204-011-0010-7.

20. Z. N. Hasheem and E. T. Abdullah, Iraqi J. Phy. 21, 84 (2023). Doi.org/10.30723/ijp.v21i2.1113.

21. T. A. Al-Mashhadani and F. J. J. I. J. O. a. P. L. Al-Maliki, 4, (2021).

22. S. H. Hasan and S. S. M. Alawadi, Iraqi J. Sci. 63, 2025 (2022). DOI: 10.24996/ijs.2022.63.5.18.

23. J. Fang, C. Zhong, and R. Mu, Chem. Phys. Lett. 401, 271 (2005). DOI: 10.1016/j.cplett.2004.11.055.

24. T. A. Al-Mashhadani and F. J. Al-Maliki, Iraqi J. Appl. Phys. 18, 25 (2022).

25. P. H. Scudder, Electron Flow in Organic Chemistry: A Decision-Based Guide to Organic Mechanisms (Canda, John Wiley & Sons, 2023).

26. A. Burrows, J. Holman, S. Lancaster, A. Parsons, T. Overton, G. Pilling, and G. Price, Chemistry3: Introducing Inorganic, Organic and Physical Chemistry (New York, USA, Oxford University Press, 2021).

Similar Articles

You may also start an advanced similarity search for this article.