Optimization of the Preparation Conditions of Polyaluminum Chloride by Recycling of Cans
Main Article Content
Abstract
This study involved the preparation of polyaluminum chloride (PAC) from basic materials and elements, namely aluminum flakes (pure and impure), by dissolving them in hydrochloric acid diluted to 50%. The flakes were added gradually to ensure the formation of a PAC solution with high specifications and efficiency in treating turbid water and forming heavy flocs as one of the important applications for removing turbidity and some elements from drinking water and wastewater. This method was verified using a turbidity meter and the application mechanism using a jar-test apparatus. The analyses showed that the efficiency and sedimentation speed reached 95% for high turbidity levels and 98% for low turbidity levels. X-ray diffraction (XRD) analyses clarified the compounds present in both pure and impure materials, and the purity of the material was determined using a UV device. The results indicated the purity of the substance in the solution prepared from pure materials and the level of impurities in the solution prepared from impure materials (poly aluminum), as well as the efficiency variation according to the alkalinity of the solution. Additionally, Fourier Transform Infrared (FT-IR), an atomic absorption spectrometer, and a titration meter for chlorine measurement were used. The comparison between PAC and alum showed the potential of PAC as an ideal and highly efficient alternative.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. H. H. Youssef, Sh. A. Younis, E. M. El-Fawal, H. R. Ali, Y. M. Moustafa, and G. G. Mohamed, Separations, 10, 570 (2023). https://doi.org/10.3390/separations10110570.
2. A. Hessam and M. H. Mehdinejad, Water Practice and Technology, 16, 1173 (2021). https://doi.org/10.2166/wpt.2021.070.
3. G. Kashi, Sh. Younesi, A. Heidary, Z. Akbarishahabi, B. Kavianpour, and R. R. Kalantary, Water Sciences and Technology, 84, 16 (2021). https://doi.org/10.2166/wst.2021.206.
4. O. Sh. Rizvi, A. Ikhlaq, U. Ashar, U. Y. Qazi, A. Akram, I. Kalim, A. Alazmi, S. M. Ibn Shamsah, K. A. Al-Sodani, R. Javaid, F. Qi, Journal of Environmental Management, 323, 115977 (2022). https://doi.org/10.1016/j.jenvman.2022.115977.
5. R. AIsaeed, Advanance in Environmetal Technology (AET), 7, 263 (2021). https://doi.org/10.22104/aet.2022.5303.1433.
6. Md. A. Karim, Md. R. Rahaman, Sh. S. Dipti, M. M. E. Elahi, Journal of Water and Environment Technology, 22, 41 )2024). https://doi.org/10.2965/jwet.23-087.
7. S. Y. Jalal, D. A. Darwesh, Iraqi Journal of. Science, 64, 6175 (2023). https://doi.org/10.24996/ijs.2023.64.12.8.
8. T. Kekes, C. Tzia, and G. Kolliopoulos, Water, 15, 2325 (2023). https://doi.org/10.3390/w15132325.
9. A. W. Ahmed, M. A. Atiya, M J. M-Ridha, Baghdad Sci. J., 20, 1028 (2023). https://doi.org/10.21123/bsj.2023.7987.
10. A. E. Kassa, N. T. Shibeshi, B. Z. Tizazu, Journal of Water Process Engineering, 57, 104700 (2024). https://doi.org/10.1016/j.jwpe.2023.104700.
11. K. Djeffal, S. Bouranene, P. Fievet, S. Déon, and A. Gheid, Separation Science and Technology, 56, 168 (2019). https://doi.org/10.1080/01496395.2019.1708114.
12. F. M. Mohamed, M. R. El-Aassar, A. M. Abdullah, M. A. Roshdy, A. El-Latif Hesham, I. M. Abd El-Gaied, E. A. Mohamed, Desalination and Water Treatment, 317, 100178 (2024). https://doi.org/10.1016/j.dwt.2024.100178.
13. A. T. Salem and N. O. A. AL-Musawi, Journal of Engineering, 27, 20 (2021). https://doi.org/10.31026/j.eng.2021.09.02.
14. Z. Wu, X. Zhang, J. Pang, J. Li, J. Li, and P. Zhang, RSC Adv., 10, 7155 (2020). https://doi.org/10.1039/C9RA10189F.
15. J. Q. Jiang, Journal Sep. Purif. Methods, 30(1), 127 (2001). https://doi.org/10.1081/SPM-100102986.
16. W. Chen, B. Li, Q. Li, and J. Tian, Construction and Building Materials, 124, 1019 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.154.
17. J. Zhuang, Y. Qi, H. Yang, H. Li, and T. Shi, J. Water Process Eng., 41, 102023 (2021). https://doi.org/10.1016/j.jwpe.2021.102023.
18. J. T. Kloprogge, H. Ruan, and R. L. Frost, J. Mater. Sci., 36, 603 (2001). https://doi.org/10.1023/A:1004860118470.
19. Y. Kong, Y. Ma, L. Ding, J. Ma, H. Zhang, Z. Chen, and J. Shen, Sep. Purify. Technol., 259, 118137 (2021). https://doi.org/10.1016/j.seppur.2020.118137.
20. K. S. Siefert, Polyaluminum Chlorides, (Kirk-Othmer Encyclopedia of Chemical Technology), University Professor, USA, December (2000). https://doi.org/10.1002/0471238961.1615122519090506.a01.
21. M. S. S. Abujazar, S. U. Karaagaç, S. S. Abu Amr, M. Y. D. Alazaiza, and M. J.Bashir, J. Clean. Prod., 345, 131133 )2022(. https://doi.org/10.1016/j.jclepro.2022.131133.
22. S. S. M. Ali, R. H. H. Al-Shammari, and A. M. J. Al-Mamoori, Baghdad Sci. J., 20(6), 2134 (2023). https://dx.doi.org/10.21123/bsj.2023.7773.
23. H. E. Mamby, K. N. Hidayat, and A. Wahyudi, Earth and Environmental Science, 882, 012014 (2021). https://doi.org/10.1088/1755-1315/882/1/012014.
24. N. Abd. Ghulam, M. N. Abbas, and D. E. Sachit, Article in Indian Chemical Engineer, 62(3), 301 (2020). https://doi.org/10.1080/00194506.2019.1677512.
25. A. Pruss and P. Pruss, Desalin. Water Treat., 186, 267 )2020(. https://doi.org/10.5004/dwt.2020.25457.
26. R. Bonfiglio, M. Scimeca, and A. Mauriello, Archives of Toxicology, 97, 2997 (2023). https://doi.org/10.1007/s00204-023-03581-6.