Study the Influence of X-ray on the Optical and Mechanical Properties of CMC HV/ PAC LV Polymeric Films
Main Article Content
Abstract
IIn this work, carboxymethyl cellulose/polyanionic cellulose (CMC HV/PAC LV) films were prepared and exposed to different X-ray doses (0, 200, 400, 600 and 800 cGy). Absorption and transmission measurements of the ultraviolet spectrum of the incident light were studied with a DU 800 spectrophotometer. Stress and strain were calculated by applying a tensile force to the samples and increasing its amplitude until the sample breaks. Applying this force to the samples increased the length of the samples. The absorption of CMC HV/PAC LV films increased with increasing X-ray dose, and therefore, the absorption coefficient increased with increasing X-ray dose. The results show that the amount of spectral transmittance of the films decreased with increasing X-ray dose, indicating that the opacity of the samples increased with increasing X-ray dose. The characteristic absorption peaks are observed at 275 nm-1, 328 nm-1, 345 nm-1, 370 nm-1, and 470 nm-1, indicating molecular bonding. Increasing the X-ray dose decreases the elastic modulus of the films, and the stress amplification factor decreases with increasing strain ratio, indicating that X-ray photon irradiation leads to a decrease in the elasticity of the films. The results of this research may be useful in many fields, including industrial, medical or scientific research, as well as in oil fields.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
T. Churam, P. Usubharatana, and H. Phungrassami, Sustainability 16, 2352 (2024). DOI: 10.3390/su16062352.
J. S. Behra, J. Mattsson, O. J. Cayre, E. S. J. Robles, H. Tang, and T. N. Hunter, ACS Appl. Poly. Mat. 1, 344 (2019). DOI: 10.1021/acsapm.8b00110.
A. Busch, V. Myrseth, M. Khatibi, P. Skjetne, S. Hovda, and S. T. Johansen, Appl. Rheo. 28, 201825154 (2018). DOI: 10.3933/applrheol-28-25154.
S. W. C. Shabbir, Shilpi Int. J. of Pharm. Sci. 2, 1232 (2024). DOI: 10.5281/zenodo.12570882.
T. R. Sneha, R. Sheeja, and V. M. Nishad, Int. J. Pharm. Res. Appl. 7, 532 (2022). DOI: 10.35629/7781-0702532535.
P. K. Kamweru, F. G. Ndiritu, T. Kinyanjui, Z. W. Muthui, R. G. Ngumbu, and P. M. Odhiambo, Int. J. Phys. Sci. 9, 545 (2014). DOI: 10.5897/IJPS2014.4229
N. Karmaker, K. M. Maraz, F. Islam, M. M. Haque, M. Razzak, M. Mollah, M. Faruque, and R. A. Khan, GSC Advan. Res. Rev. Mod. Phys. 7, 064 (2021). DOI: 10.30574/gscarr.2021.7.1.0043.
S. Prabhu, D. K. Naveen, S. Bangera, and B. S. Bhat, Journal of Physics: Conference Series (Mangalore, India IOP Publishing, 2020). p. 012036.
G. Alcocer, Mediterr. J. Bas. Appl. Sci. (MJBAS) 5, 51 (2022). DOI: 10.46382/MJBAS.2021.5406.
B. Mcevoy, A. Maksimovic, D. Howell, P. Reppert, D. Ryan, N. Rowan, and H. Michel, Rad. Phys. Chem. 208, 110915 (2023). DOI: 10.1016/j.radphyschem.2023.110915.
H. P. Pasanen, R. Khan, J. A. Odutola, and N. V. Tkachenko, J. Phys. Chem. C 128, 6167 (2024). DOI: 10.1021/acs.jpcc.4c00981.
D. Boskou, Olive Oil: Constituents, Quality, Health Properties and Bioconversions (Rijeka, IntechOpen, 2012).
H. Elhosiny Ali, M. Abdel-Aziz, A. Mahmoud Ibrahiem, M. A. Sayed, H. S. M. Abd-Rabboh, N. S. Awwad, H. Algarni, M. Shkir, and M. Yasmin Khairy, Polymers 14, 1741 (2022). DOI: 10.3390/polym14091741.
T. Commins and C. R. Siviour, Proce. Roy. Soci. 479, 20220830 (2023). DOI: 10.1098/rspa.2022.0830.
R. H. Alasfar, S. Ahzi, N. Barth, V. Kochkodan, M. Khraisheh, and M. Koç, Polymers 14, 360 (2022). DOI: 10.3390/polym14030360.
A. N. Abd, S. K. Rahi, and Z. M. A. Khalik, NeuroQuantology 18, 21 (2020). DOI: 10.14704/nq.2020.18.6.NQ20178.
S. Iqbal, M. S. Rafique, S. Anjum, A. Hayat, and N. Iqbal, Appl. Surf. Sci. 259, 853 (2012). DOI: 10.1016/j.apsusc.2012.07.146.
S. A. Nouh, H. A. El-Nabarawy, M. M. Abutalib, and R. A. Bahareth, Eur. Phys. J. Appl. Phys. 62, 30201 (2013). DOI: 10.1051/epjap/2013130050.
M. Hamza, Libyan J. Sci. 25, 10 (2022).
S. Abdullahi, A. Aydarous, and N. Salah, Radiation Phys. Chem. 188, 109656 (2021). DOI: 10.1016/j.radphyschem.2021.109656.
A. a. H. Qwasmeh, B. A. Abu Saleh, M. Al-Tweissi, M. a. A. Tarawneh, Z. M. Elimat, R. I. Alzubi, and H. K. Juwhari, J. Compos. Sci. 7, 194 (2023). DOI: 10.3390/jcs7050194.
R. Dewi, Krisman, Zulkarnain, Rahmawati, and T. S. L. Husain S., AIP Conf. Proce. 2169, 060002 (2019). DOI: 10.1063/1.5132680.
A. Axelevitch, B. Gorenstein, and G. Golan, Phys. Proce. 32, 1 (2012). DOI: 10.1016/j.phpro.2012.03.510.
F. P. Beer, E. R. Johnston, J. T. Dewolf, and D. F. Mazurek, Mechanics of Materials (New York, McGraw-Hill, 2012).
M. Konarzewski, M. Stankiewicz, M. Sarzyński, M. Wieczorek, M. Czerwińska, P. Prasuła, and R. Panowicz, Acta Mech. Autom. 17, 317 (2023). DOI: 10.2478/ama-2023-0037.
X. Liang and A. J. Crosby, Ext. Mech. Lett. 35, 100637 (2020). DOI: 10.1016/j.eml.2020.100637.
P. Sotta, P.-A. Albouy, M. Abou Taha, B. Moreaux, and C. Fayolle, Polymers 14, 9 (2022). DOI: 10.3390/polym14010009.
D. Lingegowda, J. Kumar, A. Prasad, M. Z. Mahsa Zarei, and S. G. Shubha Gopal, Romanian J. Biophys. 22, 137 (2012).
R. A. Pratiwi and A. B. D. Nandiyanto, Indonesian J. Educ. Res. Tech. 2, 20 (2022). DOI: 10.17509/ijert.v2i1.35171.
S. S. Hamza, S. El-Sabbagh, and F. Shokr, Int. J. Poly. Mat. Poly. Biomat. 57, 203 (2008). DOI: 10.1080/00914030701413330.