Estimation the blast wave pressure effecters by apply Remote Sensing (RS) and Geographic Information System (GIS) techniques
Main Article Content
Abstract
After the year 2003 terrorist attacks knock Baghdad city capital of Iraq using bomb explosion various, shook the nation, and made public resident of Baghdad aware of the need for better ways to protect occupants, assets, and buildings cause the terrorist gangs adopt style burst of blast to injury vulnerability a wider range form, and many structures will suffer damage from air blast when the overpressure concomitant the blast wave, (i.e., the excess over the atmospheric pressure 14.7 pounds per square inch at standard sea level conditions are about one-half pound per square inch or more(
to attainment injury. Then, the distance to which this overpressure level will extend depends primarily on the energy yield (§1.20) of the burst of blast. Accordingly, must been have adopted a changing philosophy to provide appropriate and effective protection for preservation of psyche and building occupants, by establishment of a protected perimeter and the design of a debris mitigating facade, the isolation of internal explosive threats that may to dodge detection through the screening stations or may enter the public spaces prior to screening and the protection of the emergency evacuation, rescue and recovery systems. By reason of this above-mentioned, the study simple contribution of determined phenomena risk containment. Moreover, in this study may be applied remote sensing (RS) and geographic information system (GIS) techniques to estimation the blast wave overpressure of bomb explosive effecters for damage that building of materials (i.e., facade, building glass, secondary of roof, fashioning tools and furniture), and how avoid this problem, therefore, selection justice ministry of Iraq building in Salehyiea region at Baghdad city, it destroyed at 28/10/2009 by motocar bombs explosion.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.