Polluted Water Sensor Based on Carbon Quantum Dots/Alq3 Using Drop Casting and Spin Coating Techniques

Main Article Content

Lana Ali Essa
Raied K. Jamal
https://orcid.org/0000-0002-6159-5373

Abstract

Water quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of 30 oC. Through the results, it was found that the highest sensitivity of sample 3 to the carbon continuous dot was in the case of the contaminant fructose and was 99.55%, while the highest sensitivity of sample 4 was for the one sensitive to the contaminant (mercury chloride) and was 81. As for sample 1, the highest sensitivity was in the case of detecting the contaminant lead chloride and was 80. The results showed that the best sensor was obtained using a spin-coating technique when the solution sample of CQDs+Alq3 was placed on a silicon slide in fructose and the sensitivity was 200%. This demonstrates the importance of quantum dots in measuring the sensitivity of water pollutants. The thin film thickness was measured to be 500 nm.

Article Details

How to Cite
1.
Polluted Water Sensor Based on Carbon Quantum Dots/Alq3 Using Drop Casting and Spin Coating Techniques. IJP [Internet]. 2023 Dec. 1 [cited 2024 Apr. 27];21(4):103-12. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1185
Section
Articles

How to Cite

1.
Polluted Water Sensor Based on Carbon Quantum Dots/Alq3 Using Drop Casting and Spin Coating Techniques. IJP [Internet]. 2023 Dec. 1 [cited 2024 Apr. 27];21(4):103-12. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1185

References

M. F. Foda, L. Huang, F. Shao, H. Y. Han, ACS Appl. Mater. Interfaces, 6, 2011–2017 (2014).

Y. Lucire, Pathology, 51(S27), (2019).

E. Paulus, S. Brix, A. Siebert, P. M. Arbizu, S. Rossel, J. Peters, J. Svavarsson, M. Schwentner, Mol. Ecol., 31 (1),313–330 (2022).

C. N. Foster, U. A. Rossi, M. Zubieta, V. Vanzini, C. A. Rossetti, Res. Vet. Sci., 147, 1–6 (2022)

S. K. P. Lau, He Z., C-C. Tsang, T. T. Y Chan, H. K. H. Luk, E. Chan, K. S. M. Li, J. Fung, F. W. N. Chow, A. R. Tam, Microorganisms 9,1019 (2021).

A. H. Lam, J. P. Cai, K. Y. Leung, R. R. Zhang, D. Liu, Y. Fan, A. R. Tam, V. C. Cheng, K. K. To, K. Y. Yuen, I. F. Hung, K. H. Chan, Diagnostics, 11(12), 2346 (2021).

X. Kou, L. Tong, Y. Shen, W. Zhu, L. Yin, S. Huang, F. Zhu, G. Chen, G. Ouyang, Biosensor. Bioelectron, 156(112095), (2020).

A. M. Musa, J. Kiely, R. Luxton, K. C. Honeychurch, TrAC-Trends in Anal. Chem. 139 (116254), (2021).

N. Xia, Int. J. Electrochem. Sci. 14, 1843–1854 (2019)

G. Rong, S. R. Corrie, H. A. Clark, ACS Sens. 2, 327–338(2017).

S. Szunerits, R. Boukherroub, Interface Focus 8 (20160132), (2018).

P. Mehrotra, J. Oral Biol. and Craniofacial Res. 6(2), 153–159 (2016).

M. A. Zamzami, G. Rabbani, A. Ahmad, A. A. Basalah, W. H. Al-Sabban. A. S. Nate, H. Choudhry, Bioelectrochemistry, 143(107982), (2022).

W. Shao, M. R. Shurin, S. E. Wheeler, X. He, ACS Appl. Mater. Interfaces, 13(8), 10321–10327(2021).

S. Filali, F. Pirot, P. Miossec, Trends Biotechnol, 38(2), 163–177(2020).

S. Rani, M. Kumar, Y. Singh, M. Tomar, A. Sharma, V. Gupta, V. N. Singh, J. Nanosci. Nanotech., 21(9), 4779–4785 (2021).

A. Hosseingholipourasl, S. H. S. Ariffin, S. S. R. Koloor, M. Petru, A. Hamzah, IEEE Access 8, 12655–12661(2020).

H. S. Hong, N. H. Ha, D. D. Thinh, N. H. Nam, N. T. Huong, N. T. Hue, T. V. Hoang, Nano Energy 87(106165), (2021).

W. Shin, S. Hong, Y. Jeong, G. Jung, J. Park, D. Kim, C. Lee, B. -G. Park, J. -H. Lee, Nanoscale, 13(19), 9009-9017 (2021).

T. Manimekala, R. Sivasubramanian, G. Dharmalingam, J. Electron. Mater 51(5), 1950–1973 (2022).

V. Naresh, N. Lee, Sensor(Basel), 21(4), 1109 (2021).

D. Sadighbayan, M. Hasanzadeh, E. Ghafar-Zadeh, Trends Anal. Chem. 133, 116067(2020).

W. J. Peveler, M. Yazdani, V. M. Rotello, ACS Sens. 1(11), 1282–1285 (2016).

A. Popov, R. Aukstakojute, J. Gaidukevic, V. Lisyte, A. Kausaite, J. Barkauskas and A. Ramanaviciene, Sensors, 21(948), (2021).

V. Chiozzi, F. Rossi, Nanoscale. Adv., 2(11), 5090-5105 (2020).

C. Lu, S. Zhou, F. Gao, J. Lin, J. Liu, J. Zheng, TrAC Trends Anal. Chem. 148(116533), (2022).

A. Jain, A. Homayoun, C. W. Bannister, K. Yum, Biotechnol J., 10(3), 447–459 (2015).

L. Sun, X. Wang, F. Gong, K. Yin, W. Zhu, N. Yang, S. Bai, F. Liao, M. Shao, L. Cheng, Theranostics, 11(19), 9234–9242 (2021).

C. Xu, Z. W. Ling, Z. Qi, R. Liu, Y. Q. Liu, Recent Pat. Nanotechnol, 14, 27–34 (2020).

L. Zhou, H. Mao, C. Wu, L. Tang, Z. Wu, H. Sun, H. Zhang, H. Zhou, C. Jia, Q. Jin, Biosens. Bioelectron., 87, 701–707 (2017).

E. Piccinini, C. Bliem, C. Reiner-Rozman, F. Battaglini, O. Azzaroni, W. Knoll, Biosens. Bioelectron, 92, 661–667 (2017).

L. A. Essa, Raied, K. Jamal, journal of optics, (2023)

C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 51(12), 913-915 (1987).

J. H. Xie, L.S. Hung, S. T. Lee, Phys. Lett., 79(7), 1048 -1052(2001).

Xie, G, Appl. Phys. Lett., 92, 451-458, (2008)

C. Adachi, R. Kwong, S. Forrest, Org. Electronics 2(1), 37-43 (2001)

F. W. Guo, D. G. Ma, L. X. Wang, X. Jing, F. Wang, Semicond. Sci. Technol., 20(3), 310–313 (2005).

T.-M. Liu, S.-P. Tai, C.-H. Yu, Y.-C. Wen, S.-W. Chu, L.-J. Chen, M. R. Prasad, K.-J. Lin, and C.-K. un, Appl. Phys. Lett., 89(043122), (2006).

G. Z. Yue, Q. Qie, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, L. P. Lu, O. Zho, Phys. Lett., 81, 355(2002).

Y. Kiran, A. Sahin, Fen Bilimleri Dergisi, 18(1),17-25(2005).

T. F. Gale, Environ. Res., 8(2), 207-213 (1974).

L. Tappy, J. P. Randin, J. P. Felber, R. Chiolero, D. C. Simonson, E. Jequier, R. A. Defronzo, Am. J. Physiol, 250,(1986).

M. M Arafat, A. S. M. Haseeb, and S. A. Akbar, Sensors, 14(8), 13613-13627 (2014).

N. L. Hussein, K. S. Khashan, H. M. Rasheed, H. Y. Hammoud, R. M. S. ALHaddad, Iraqi Journal of Science, 60(special Issue), 52-56 (2019).

Y. A. Mahmood, B. T. Chiad, Iraqi Journal of Physics, 18(44), 62-68 (2020).

I. M. Al-Essa, Iraqi Journal of Physics, 10(19), 41-46 (2012)

S. S. Mahmood, F. H. Hussien, A. J. Atiyah, Baghdad Science Journal, 20(2), (2023).

S. M. Omran, E. T. Abdullah, O. A. Al-Zuhairi, Iraqi Journal of Science, 63(9), 3719-3726 (2022).

B. Y. Kadem, R. K. Husein, Z. Y. Abbas, Iraqi Journal of Science, 63(8), 3373-3381(2022).

A. S. Elewi, S. A. Wadood, A. K. M. Ali, Iraqi Journal of Science, 60(11), 2332-2340 (2019).

Similar Articles

You may also start an advanced similarity search for this article.