Influence of Laser Energy on the Structural and Optical Properties of Sn Nanoparticles produced with Laser-Induced Plasma

Main Article Content

Raghad T. Ahmed
https://orcid.org/0000-0002-4466-3899
Ala F. Ahmed
https://orcid.org/0000-0003-2027-3594

Abstract

This study aimed to investigate the structure and optical properties of Sn nanostructures. Thin tin (Sn) films were deposited on glass substrates using the pulsed laser deposition method. Nd:YAG laser with fundamental wavelengths of 532 nm and 1064 nm was used to create Sn nanostructures with varying energies of 400 mJ to 700 mJ and the same frequency of 6 Hz. The tin powder was compressed into a disc with a one-centimetre diameter to serve as a sample. The X-ray diffraction (XRD) pattern showed a crystalline structure with several Sn nanostructures peaks at various energies (400–700 mJ). The results revealed a crystalline size of 65.90 nm and 86.55 nm at 700 mJ, while the size was 40.19 nm and 17.19 at 400 mJ for the given wavelengths (532nm and 1064 nm), respectively. The appearance of Sn nanostructures and the aggregation of, particularly in the form of cauliflower, were revealed in Field emission scanning electron microscopy (FE-SEM) images. The results of the dispersive energy X-ray spectroscopy (EDS) analysis showed that various amounts of tin, carbon, and oxygen were present. Additionally, the optical characteristics were investigated of each film using absorbance spectra, which covered a range of wavelengths from 190 to 1100 nm. As the laser power increased, the band gap energy values in the optical properties decreased, falling into the ranges of 3.06 to 1.65 eV and 3.22 to 1.82 eV at 1064nm and 532nm, respectively.

Article Details

How to Cite
1.
Ahmed RT, Ahmed AF. Influence of Laser Energy on the Structural and Optical Properties of Sn Nanoparticles produced with Laser-Induced Plasma. IJP [Internet]. 2024 Jun. 1 [cited 2024 Oct. 11];22(2):69-80. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1169
Section
Articles

References

T. Ma, Ph.D Thesis, The University of Hong Kong, 2004.

Y. Zhang, T. Zhang, and H. Li, Spectrochim. Acta Part B Atomic Spectro. 181, 106218 (2021).

D. Zhang, Y. Chu, S. Ma, Z. Sheng, F. Chen, Z. Hu, S. Zhang, B. Wang, and L. Guo, Appl. Surf. Sci. 534, 147601 (2020).

U. H. Tawfeeq, A. K. Abbas, and K. A. Aadim, Journal of Physics: Conference Series (Istanbul, Turkey IOP Publishing, 2021). p. 012049.

S. Das, R. Bhunia, S. Hussain, R. Bhar, B. Chakraborty, and A. Pal, Appl. Surf. Sci. 353, 439 (2015).

M. S. Nek, Y. Tao, R. A. Burdt, S. Yuspeh, N. Amin, and M. S. Tillack, J. Phys. Conf. Ser. 244, 042005 (2010).

A. Ahmed, M. Salman, M. Alwazzan, and A. Meri, J. Adv. Res. Dyn. Control Syst. 11, 412 (2019).

A. M. A. Hussein, S. A. Abdullah, M. Rasheed, and R. S. Zamel, Iraqi J. Phys. 18, 73 (2020).

I. K. Abbas and K. A. Aadim, Sci. Tech. Indonesia 7, 427 (2022).

E. Asamoah and Y. Hongbing, Appl. Phys. B 123, 1 (2017).

F. Ruan, T. Zhang, and H. Li, Appl. Spect. Rev. 54, 573 (2019).

Z. L. Petrović, N. Puač, S. Lazović, D. Maletić, K. Spasić, and G. Malović, Journal of Physics: Conference Series (Sunny Beach, Bulgaria IOP Publishing, 2012). p. 012001.

A. K. Rao and D. R. Kumar, Mat. Today Proce. 27, 1768 (2020).

A. K. Myakalwar, C. Sandoval, M. Velásquez, D. Sbarbaro, B. Sepúlveda, and J. Yáñez, Minerals 11, 1073 (2021).

S. Tazikeh, A. Akbari, A. Talebi, and E. Talebi, Mat. Sci. Poland 32, 98 (2014).

O. A. Thuhaib and H. Hashim, Al-Nahrain J. Sci. 24, 26 (2021).

N. K. Abdalameer, Ph.D Thesis, University of Baghdad, 2021.

D. Bhattacharya, Pramana 55, 823 (2000).

S. M. Jafari, Characterization of nanoencapsulated food ingredients (London, UK, Academic Press, 2020).

E. J. Mohammed, A. K. Abbas, and K. A. Aadim, Iraqi J. Phys. 18, 21 (2020).

M. V. Allmen and A. Blatter, Laser-Beam Interactions with Materials: Physical Principles and Applications (New York, Springer Science & Business Media, 2013).

Y. Shadangi, V. Shivam, M. K. Singh, K. Chattopadhyay, J. Basu, and N. Mukhopadhyay, J. All. Comp. 797, 1280 (2019).

K. De Haan, Z. S. Ballard, Y. Rivenson, Y. Wu, and A. Ozcan, Sci. Rep. 9, 12050 (2019).

M. Hasaneen, M. Shalaby, N. Yousif, A. Diab, and E. El Agammy, Mat. Sci. Eng. B 280, 115703 (2022).

R. Indirajith, M. Rajalakshmi, K. Ramamurthi, M. B. Ahamed, and R. Gopalakrishnan, Ferroelectrics 467, 13 (2014).

A. P. Frit, K. Deepalakshmi, N. Prithivikumaran, and N. Jeyakumaran, J. Chem. Tech. Res. 6, 5347 (2014).

B. Zheng, J. Lian, L. Zhao, and Q. Jiang, Vacuum 85, 861 (2011).

T. S. Hussein and A. F. Ahmed, Journal of Physics: Conference Series (IOP Publishing, 2021). p. 012012.

T. S. Hussein, A. F. Ahmed, and K. A. Aadim, Iraqi J. Sci. 63, 548 (2022).

A. F. Ahmed, F. a.-H. Mutlak, and Q. A. Abbas, Appl. Phys. A 128, 147 (2022).

Similar Articles

You may also start an advanced similarity search for this article.