Surface Plasmon Resonance (SPR)-Based Multimode Optical Fiber Sensors for Electrical Transformer Oil Aging Detection
Main Article Content
Abstract
I
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2). In the current study, the refractive index values of sucrose and water solutions at different concentrations, which were used as a calibration method, were calculated to be (1.346, 1.359, 1.382, and 1.39). It was found that when the refractive index of the sensitive medium increases, the length of the resonant wavelength increases due to the decrease in energy.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
The fiber optic association, inc. The international professional association of fiber optics; https://www.thefoa.org/.
Y. Zhou, Y.-N. Zhang, B. Han, L. Cheng, D. Li, W. Zheng, and Y. Zhao, Measurement 207, 112353 (2022).
C. Liu, J. Wang, F. Wang, W. Su, L. Yang, J. Lv, G. Fu, X. Li, Q. Liu, and T. Sun, Opt. Communic. 464, 125496 (2020).
S. Lawan, M. Ajiya, and D. Shu'aibu, Signal 10, 3 (2012).
A. H. Malik, M. Azeem, M. Y. Hamza, and S. Tariq, in 2008 Second International Conference on Electrical Engineering (IEEE, 2008). p. 1.
M. Hamza and S. Tariq, in 2007 International Conference on Electrical Engineering (Lahore, Pakistan IEEE, 2007). p. 1.
A. Razzaq, H. Zainuddin, F. Hanaffi, and R. M. Chyad, IET Sci. Measur. Tech. 13, 615 (2019).
J. M. Senior and M. Y. Jamro, OPTICAL FIBER COMMUNICATIONS: PRINCIPLES AND PRACTICE (Harlow, England, Pearson Education, 2009).
H. K. Hisham, Am. J. Sens. Tech. 4, 30 (2017).
R. Nasirifar, M. Danaie, and A. Dideban, Optik 250, 168051 (2022).
N. S. Rahim, S. S. Ahmed, and M. F. Sultan, Iraqi J. Sci. 61, 1650 (2020).
M. Azadeh, FIBER OPTICS ENGINEERING (Davis, CA, USA, Springer, 2009).
N. S. Omar, Y. W. Fen, S. Saleviter, W. M. E. M. M. Daniyal, N. A. Anas, N. S. M. Ramdzan, and M. D. A. Roshidi, Materials 12, 1928 (2019).
V. T. Huong, V. Van Tran, N. Y. Lee, D. Van Hoang, K. T. Loan Trinh, T. B. Phan, and N. H. Thi Tran, Langmuir 36, 9967 (2020).
W. Zheng, B. Han, E. Siyu, Y. Sun, X. Li, Y. Cai, and Y.-N. Zhang, Microchem. J. 157, 105010 (2020).
B. Lee, Optic. Fiber Tech. 9, 57 (2003).
K. Fidanboylu and H. Efendioglu, in 5th International Advanced Technologies Symposium (IATS’09) (Karabuk, Turkey Karabük University, 2009). p. 2.
H. K. Hisham, Am. J. Rem. Sens 6, 1 (2018).
R. Nasirifar, M. Danaie, and A. Dideban, Optik 186, 194 (2019).
D. Abeysundara, C. Weerakoon, J. Lucas, K. Gunatunga, and K. Obadage, in ERU Symposium (Bandaranayake Mawatha, Moratuwa University of Moratuwa, 2001). p. 1.
F. Sitinjak, I. Suhariadi, and L. Imsak, in Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (Cat. No. 03CH37417) (Nagoya, Japan IEEE, 2003). p. 495.
E. A. Fadhil, M. M. Abdullah, and F. M. Lafta, Iraqi J. Appl. Phys. 19, 35 (2023).
E. A. Fadhil, M. M. Abdullah, and F. M. Lafta, Int.. J. Nanosci., 2350061 (2023).
M. F. Sultan, A. A. Al-Zuky, and S. A. Kadhim, Al-Mustansiriyah J. Sci. 29, 195 (2018).
L. Mescia and F. Prudenzano, Fibers 2, 1 (2013).
E. Kretschmann and H. Raether, Zeitsch. Naturfors. A 23, 2135 (1968).
A. Otto, Zeitsch. Phys. Had. Nuc. 216, 398 (1968).
S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, Sens. Bio-sens. Res. 18, 7 (2018).
V. Yesudasu, H. S. Pradhan, and R. J. Pandya, Heliyon 7, e06321 (2021).
F. F. Abbas and S. S. Ahmed, Iraqi J. Sci. 64, 658 (2023).
D. V. Nesterenko and Z. Sekkat, Plasmonics 8, 1585 (2013).
J. Hottin, E. Wijaya, L. Hay, S. Maricot, M. Bouazaoui, and J.-P. Vilcot, Plasmonics 8, 619 (2013).
B. Foerster, V. A. Spata, E. A. Carter, C. Sönnichsen, and S. Link, Sci. Advan. 5, eaav0704 (2019).
A. I. Mahmood, A. I. Mahmood, and S. S. Ahmed, Iraqi J. Sci. 59, 1577 (2018).
N. Yasser, N. A. Ali, and L. H. Sulaiman, Iraqi J. Sci. 59, 294 (2018).
G. M. Jassam, S. S. Alâ, and M. F. Sultan, Iraqi J. Sci. 61, 765 (2020).
T. Allsop and R. Neal, Sensors 19, 4874 (2019).
A. R. Prado, C. A. Díaz, L. G. Lyra Nunes, J. P. Oliveira, M. C. Guimarães, A. Leal-Junior, M. R. Ribeiro, and M. J. Pontes, Plasmonics 16, 787 (2021).
H. H. Qazi, S. F. Memon, M. M. Ali, M. S. Irshad, S. A. Ehsan, M. R. B. Salim, A. B. B. Mohammad, M. Z. Zulkifli, and M. Idrees, J. Mod. Opt. 66, 1244 (2019).
R. A. Kadhim, A. K. K. Abdul, and L. Yuan, IETE Tech. Rev. 39, 442 (2022).
N. S. Rahim, Iraqi J. Phys. 17, 41 (2019).
G. Soghra, B. Jamal, and M. Bahar, Optik 260, 169026 (2022).
A. Urrutia, J. Goicoechea, and F. J. Arregui, J. Sens. 2015, 1 (2015).
H. Han, D. Hou, N. Luan, Z. Bai, L. Song, J. Liu, and Y. Hu, Sensors 20, 3911 (2020).
Q. Wang, J. Y. Jing, and B. T. Wang, Transac. Instrumen. Measur. 68, 3350 (2019).
A. K. Sharma and C. Marques, IEEE Sens. J. 19, 7168 (2019).
J.-Y. Jing, S.-Y. Li, X.-Z. Wang, Q. Zhu, F.-L. Meng, and Q. Wang, Measurement 140, 395 (2019).
G. M. Jassam, Iraqi J. Phys. 17, 11 (2019).
M. F. Sultan, A. A. Al-Zuky, and S. A. Kadhim, Al-Nahrain J. Sci. 21, 65 (2018).
I. Venditti, Materials 10, 97 (2017).