Effect of Organic / Inorganic Gate Materials on the Organic Field-Effect Transistors Performance
Main Article Content
Abstract
The choice of gate dielectric materials is fundamental for organic field effect transistors (OFET), integrated circuits, and several electronic applications. The operation of the OFET depends on two essential parameters: the insulation between the semiconductor layer and the gate electrode and the capacitance of the insulator. In this work, the electrical behavior of a pentacene-based OFET with a top contact / bottom gate was studied. Organic polyvinyl alcohol (PVA) and inorganic hafnium oxide (HfO2) were chosen as gate dielectric materials to lower the operation voltage to achieve the next generation of electronic applications. In this study, the performance of the OFET was studied using monolayer and bilayer gate insulators. To model and analyze a device's electrical properties, MATLAB was used. Two main parameters were studied: switching ratio (Ion/Ioff) and subthreshold swing (SS), as well as the effect of dielectric capacitance on the gate dielectric materials. The PVA/HfO2 bilayer gate dielectric gave the best results in Ion/Ioff ratio, SS and transconductance of 9.05´10-7, -1.52, and -4.99 x10-5A/V respectively, which is because the dielectric capacitance has increased.
Received: Mar. 28, 2023
Accepted: May 18, 2023
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
W. S. Alghamdi, A. Fakieh, H. Faber, Y.-H. Lin, W.-Z. Lin, P.-Y. Lu, C.-H. Liu, K. N. Salama, and T. D. Anthopoulos, Appl. Phys. Lett. 121, 233503 (2022).
M. Małachowski and J. Żmija, Opto-Elect. Rev. 18, 121 (2010).
B. H. Mohammed and E. T. Abdullah, Iraqi J. Sci. 61, 1040 (2020).
J. Li, W. Tang, Q. Wang, W. Sun, Q. Zhang, X. Guo, X. Wang, and F. Yan, Mater. Sci. Eng.: R: Rep. 127, 1 (2018).
R. Raveendran and M. A. Namboothiry, AIP Conf. Proce. (AIP Publishing LLC, 2019). p. 070005.
S. Bathla and N. Gaur, 4th Intern. Conf. Elect., Commun. Aeros Tech (ICECA) (IEEE, 2020). p. 182.
U. Farok, Y. Falinie, A. Alias, B. Gosh, I. Saad, A. Mukifza, and K. Anuar, 1st Inter. Conf. Artif. Intel., Model. Simul. (IEEE, 2013). p. 459.
B. Nketia‐Yawson and Y. Y. Noh, Advan. Func. Mater. 28, 1802201 (2018).
A. J. Kadhima, E. T. Abdullahb, and A. K. Judranc, Eng. Tech. J. 39, 1688 (2021).
G. S. R. Mullapudi, G. A. Velazquez-Nevarez, C. Avila-Avendano, J. A. Torres-Ochoa, M. A. Quevedo-LóPez, and R. Ramírez-Bon, ACS Appl. Elect. Mater. 1, 1003 (2019).
L. Ismail, S. Samsul, M. Musa, and S. Norsabrina, IOP Conf. Ser.: Mat. Sci. Eng. (IOP Publ., 2018). p. 012005.
N. Afsharimani and B. Nysten, Bullet. Mat. Sci. 42, 26 (2019).
A. Nawaz and I. A. Hümmelgen, J. Mat. Sci.: Mat. Elect. 30, 5299 (2019).
Y. Wang, X. Huang, T. Li, L. Li, X. Guo, and P. Jiang, Chem. Mat. 31, 2212 (2019).
A. Singh and M. K. Singh, 2020 Inter. Conf. Advan. Comp. Commun. Mat. (ICACCM) (IEEE, 2020). p. 301.
J. Veres, S. Ogier, G. Lloyd, and D. De Leeuw, Chem. Mat. 16, 4543 (2004).
B. Kumar, B. Kaushik, Y. S. Negi, P. Mittal, and A. Mandal, IEEE Rece. Advan. Intell. Comput. Syst. (IEEE, 2011). p. 706.
Y. Liu, Y. Wang, X. Li, and Z. Hu, Mat. Res. Expr. 9, 076301 (2022).
S. Jung, Y. Bonnassieux, G. Horowitz, S. Jung, B. Iñiguez, and C.-H. Kim, IEEE J. Elect. Dev. Soci. 8, 1404 (2020).
S. Ruzgar and M. Caglar, Synth. Met. 232, 46 (2017).
M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter. 20, 184011 (2008).
O. A. Ibrahim and E. T. Abdullah, Basrah J. Sci. 39, (2021).