Optical, Structural, Morphological Properties of Chromium (III) Oxide Nanostructure Synthesized Using Spray Pyrolysis Technique

Main Article Content

Fatin Hameed Mohammed
Haitham M. Mikhlif

Abstract

Nanostructure of chromium oxide (Cr2O3-NPs) with rhombohedral structure were successfully prepared by spray pyrolysis technique using Aqueous solution of Chromium (III) chloride CrCl3 as solution. The films were deposited on glass substrates heated to 450°C using X-ray diffraction (XRD) shows the nature of polycrystalline samples. The calculated lattice constant value for the grown Cr2O3 nanostructures is a = b = 4.959 Å & c = 13.594 Å and the average crystallize size (46.3-55.6) nm calculated from diffraction peaks, Spectral analysis revealed FTIR peak characteristic vibrations of Cr-O Extended and Two sharp peaks present at 630 and 578 cm-1 attributed to Cr-O “stretching modes”, are clear evidence of the presence of crystalline Cr2O3. The energy band gap (3.4 eV) for the chromium oxide nanostructures was measured using the UV-VIS-NIR Optical Spectrophotometer. It was found that by scanning electron microscopy (SEM) and image results, there is a large amount of nanostructure with an average crystal size of 46.3-55.6 nm, which indicates that our synthesis process is a successful method for preparing Cr2O3 nanoparticles.

Article Details

Section

Articles

How to Cite

1.
Mohammed FH, Mikhlif HM. Optical, Structural, Morphological Properties of Chromium (III) Oxide Nanostructure Synthesized Using Spray Pyrolysis Technique. IJP [Internet]. 2021 Dec. 1 [cited 2024 Dec. 23];19(51):79-86. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/692

References

Khan I., Saeed Kh., Nanoparticlres: properties, applications and toxicities. Arabian Journal of chemistry, 2019. 12(7): pp. 908-931.

Gesheva K., Ivanova T., Bodurov G., Szilagyi I. M., Justh N., Technologies for deposition of transition metal oxide thin films: application as functional layers in “smart windows” and photocatalytic systems. Journal of physics 2016. conference series 682.

Fernandez-Garcia M., Martinez-Arias A., Hanson J. C. and J. A. Rodriguez, Nanostructured Oxides in Chemistry Characterization and properties, Chemical Reviews, 2004. 104(9): pp. 4063-4104.

Oun A. A., Shankar Sh. and Rhim J., Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Critical Reviews in Food Science and Nutrition 2019. 60(3), 435-460.

Hebbar D., Choudhari K. S., Shivashankar S. A., Santhosh C., Kulkarni S. D., Facile microwave-assisted synthesis of Cr2O3 nanostructure with high near-infrared reflection for roof-top cooling applications. Journal of Alloys and compounds, 2019. 785: pp. 747-753.

Karimiana R., Pirib F., Synthesis and Investigation the Catalytic Behavior of Cr2O3 Nanoparticles. JNS, 2013. 3: pp. 87-92.

Wang G., Zhang L., Deng J., Dai H., He H., Au Ch. Tong, Preparation, characterization, and catalytic activity of chromia supported on SBA-15 for the oxidative dehydrogenation of isobutene. Applied Catalysis A: General, 2009. 355(1-2); pp. 192-201.

Chang T., Cao X., Li N., Long S., Gao X., Dedon L. R., Sun G., Luo H. and Jin P., Facile and Low-Temperature Fabrication of Thermochromic Cr2O3/VO2 Smart Coatings: Enhanced Solar Modulation Ability, High Luminous Transmittance and UV-Shielding Function. ACS Appl. Mater. Interfaces. 2017. 9(31): pp. 26029-26037.

Singh Sh. P., Chinde S., Kamal S. S., Rahman M. F., Mahboob M., Grover P., Genotoxic effects of chromium oxide nanoparticles and microparticles in Wistar rats after 28 days of repeated oral exposure. ESPR, 2015. 23: pp. 3914–3924.

Hassan D., Talhakhlil A., Solangi A. R., El-Mallul A., Shinwari Z. Kh., Maaza M., Physiochemical properties and novel biological applications of Callistemon viminalis‐mediated α‐Cr2O3 nanoparticles. Applied Organometallic Chemistry, 2019. 33(8).

Lu M., Cui Y., Zhao S., Fakhri A., Cr2O3/cellulose hybrid nanocomposites with unique properties: Facile synthesis, photocatalytic, bactericidal and antioxidant application. Journal of Photochemistry and Photobiology B: Biology, 2020. 205.

Bijker M. D., Bastiaens J. J. J., Draaisma E. A., de Jong L. A. M., Sourty E., Saied S. O. Sullivan J. L., The development of a thin Cr2O3 wear protective coating for the advanced digital recording system. Tribology International, 2003. 36(4-6); pp. 227-233.

He X., Antonelli D., Synthesen und Anwendungen von übergangsmetallhaltigen mesoporösen Molekularsieben. Angew. Chem. Int. Ed, 2002.114(2): pp. 222-238.

He X., Antonelli D., Recent Advances in Synthesis and Applications of Transition Metal Containing Mesoporous Molecular Sieves. Angew Chem. Int. Ed, 2002. 41(2); pp. 214-229.

Hebbar D., Choudhari K. S., Shivashankar S. A., Santhosh C., Kulkarni S. D., Facile microwave-assisted synthesis of Cr2O3 nanoparticles with high near-infrared reflection for roof-top cooling applications. Journal of Alloys and compounds, 2019. 785: pp. 747-753.

Mohanapandian K. and Krishnan A., Synthesis, Structural, Morphological and Optical Properties of Cu2+ Doped Cr2O3 Nanoparticles. International Journal of Advanced Engineering Technology, 2016. VII(II): pp. 273-279.

Wang H., Han W., Li X., Liu B., Tang H., Li Y., Solution Combustion Synthesis of Cr2O3 Nanoparticles and the Catalytic Performance for Dehydrofluorination of 1,1,1,3,3-Pentafluoropropane to 1,3,3,3-Tetrafluoropropene Molecules, 2019. 24(2): pp. 361.

Sangwan P., Kumar H., Synthesis, Characterization and Antibacterial Activities of Chromium Oxide Nanoparticles Against Klebsiella Pneumoniae. Asian Journal of Pharmaceutical and Clinical Research, 2017. 10(2): pp. 206-209.

Abdullah H. I. & Abbas L. J., Photosynthesis of Chromium Oxide Nanoparticles from Chromium Complexes. Ijapbcr, 2017. 7(1): pp. 1-8.

Tian S., Ye X., Dong Y., Li W., Zhang B., Li B., Feng H., Production and Characterization of Chromium Oxide (Cr2O3) via a Facile Combination of Electrooxidation and Calcination. International Journal of Electrochemical Science, 2019. 14: pp. 8805-8818.

Karimian R., Piri F., Synthesis and Investigation the Catalytic Behavior of Cr2O3 Nanoparticles. JNS, 2013. 3: pp. 87-92.

Tsuzuki T., Mc Cormick P. G., Synthesis of Cr2O3 Nanoparticles by mechanochemical processing. Acta Materialia. 2000. 48(11): pp. 2795-2801.

Alrehaily L. M., Joseph J. M. and Wren J. C., Radiation-Induced Formation of Chromium Oxide Nanoparticles: Role of Radical Scavengers on the Redox Kinetics and Particle Size. J. Phys. Chem. C 2015.119(28): pp. 16321-16330.

Abdullah M. M., Rajab Fahd M. and Al-Abbas Saleh M., Structural and optical characterization of Cr2O3 nanostructures: Evaluation of its dielectric properties. AIP Advances, 2014. 4, 027121.

Rer, characterization of Cr2O3 catalysts for Cl/F exchange reaction. M.Sc. thesis, chemical Engineer, 2004. Humboldt University.

Al-sharuee I.F. and Mohammed F.H. Investigation study the ability of superhydrophobic silica to adsorb the Iraqi crude oil leaked in water. IOP Conference Series: Materials Science and Engineering, 2019, 571(1): pp. 1-6.

Jamal A., Raahman M. M., Khan Sh. B., Abdullah M. M., Faisaal M., Asiri A. M., Aslam A., Khan P. and Akhtar K., Simple Growth and Characterization of α-Sb2O4: Evaluation of their Photo-catalytic and Chemical Sensing Applications. J. Chem. Soc. Pak, 2013. 35(3): pp. 570 -576.

Sone B. T., Manikandan E., Gurib-Fakim A. and Maaza M., Single-phase α-Cr2O3 nanostructure’ green synthesis using Callistemon viminalis’ red flower extrac, Green Chemistry Letters and Reviews, 2016. 9(2): pp. 85–90.

Julkarnain M., Hossain J., Sharif K. S. and Khan K. A., Optical properties of thermally evaporated Cr2O3 thin films. Canadian Journal on Chemical Engineering & Technology, 2012. 3(4): pp. 81–85.

Similar Articles

You may also start an advanced similarity search for this article.