Immobilization of Nuclear Waste Using Carbon Nanotubes Prepared by Laser Ablation in Liquid Method
Main Article Content
Abstract
In an attempt to disposal from nuclear waste which threats our health and environments. Therefore we have to find appropriate method to immobilize nuclear waste. So, in this research the nuclear waste (Strontium hydroxide) was immobilized by Carbon nanotubes (CNTs). The Nd-YAG laser with wave length 1064 nm, energy 750 mJ and 100 pulses used to prepare CNTs. After that adding Sr(HO)2 powder to the CNTs colloidal in calculated rate to get homogenous mixing of CNTs-Sr(OH)2. The Sr(HO)2 absorbs carbon dioxide from the air to form strontium carbonate so, the new solution is CNTs-SrCO3. To dry solution putting three drops from the new solution on the glass slides. To investigate the radiation damage on CNTs structure, the sample was irradiation by Beta source (90Sr/90Y) for different period of time. The structure properties were measured using X-ray diffraction XRD while the shape and size property was measured by scanning electron microscope SEM.
The result shows homogenous distribution of nanoparticles with average particle size about 20nm. The XRD spectra for all sample before and after irradiation shows the higher peaks that it’s almost appearance at 2 = 25 degree and when compared the XRD phase with Standard card the resultant nanomaterial is Strontium carbonite (SrCo3). From SEM micrograph, CNTs-SrCO3 were well decorated on the surface of CNTs and there was not any remarkable difference in the corresponding due to Beta radiation exposure.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.