A study of the Zn:Sn mixing ratio effect on the gas detector properties
Main Article Content
Abstract
Semiconductor-based metal oxide gas detector of five mixed from zinc chloride Z and tin chloride S salts Z:S ratio 0, 25, 50, 75 and 100% were fabricated on glass substrate by a spray pyrolysis technique. With thickness were about 0.2 ±0.05 μm using water soluble as precursors at a glass substrate temperature 500 ºC±5, 0.05 M, and their gas sensing properties toward CH4, LPG and H2S gas at different concentration (10, 100, 1000 ppm) in air were investigated at room temperature which related with the petroleum refining industry.
Furthermore structural and morphology properties were scrutinize. Results shows that the mixing ratio affect the composition of formative oxides were (ZnO, Zn2SnO4, Zn2SnO4+ZnSnO3, ZnSnO3, SnO2) ratios mentioned in the above respectively, and related with the sensitivity of the reduction tested gases, best sensitivity was for H2S gas, have sensitivity about 80.61% and a response time of 10 seconds for the binary oxides and 89.57% and a response time of (5-2) seconds for the mixed ternary oxides.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.