Charge density distributions and electron scattering form factors of 19F, 27Al and 25Mg nuclei
Main Article Content
Abstract
An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards its surface and to increase the root mean square charge radius ˂ r 2˃ 1/2 of the nucleus and then makes the nucleus to be less rigid than the case when there is no (SRC). It is also found that the effects of two body tensor correlations (TCs) on 2BCDD's and ˂ r 2˃ 1/2 are in opposite direction to those of (SRC).
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.