Preparing Mesoporous Alumina as a Delivery System for the Ciprofloxacin Drug using the Microemulsion Method

Main Article Content

Hayder J. Mohammed
Sameer H. Kareem

Abstract

Two samples of γ–mesoporous alumina (0.3M/m-Al2O3 and 0.5M/m-Al2O3) were prepared using the microemulsion method, with aluminium sulphate serving as the alumina precursor. The raw materials for microemulsion are sodium dodecyl sulphate (SDS) as the surfactant, 1-butanol as a cosurfactant, and n-hexanol as the oil phase. Scanning Electron Microscopy (SEM), BET surface area, BJH porosity of the samples, and their N2 adsorption-desorption isotherms at 77 K. The X-ray diffraction (XRD) and AFM techniques were used to characterize these samples. The results show that the two samples have identical phase structures and perfect indexing to the γ-Al2O3; the 0.3M/m-Al2O3 sample has a larger surface area, 229.18 m2 g-1, pore diameter, 5.59 nm, and pore volume, 0.32 cm3.g-1, than the 0.5M/m-Al2O3 sample. The morphology of the two samples was small spherical particles aggregated in spherical agglomerates, but the 0.3M/m-Al2O3 sample displayed smaller particles than the 0.5M/m-Al2O3 sample; the percentage of aluminium oxide was high, equal to 95.5% and 97.3% by weight for the 0.3M/m-Al2O3 and 0.5M/m-Al2O3, respectively. As a model, the 0.3M/m-Al2O3 sample was used as a carrier for delivering the ciprofloxacin drug. The loading was performed using the impregnation method, while the release was achieved through a dialysis bag with buffer solutions at pH levels of 7.4 and 5.4. The results indicate that the sample can serve as a suitable carrier for the ciprofloxacin drug.

Received: Jan. 14, 2025 Revised: Apr. 12, 2025 Accepted: May 3, 2025

Article Details

Section

Articles

How to Cite

1.
Mohammed HJ, Kareem SH. Preparing Mesoporous Alumina as a Delivery System for the Ciprofloxacin Drug using the Microemulsion Method. IJP [Internet]. 2025 Dec. 1 [cited 2025 Dec. 1];23(4):159-68. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1421

References

1. I. D. G. M. Permana, L. Suhendra, B. A. Harsojuwono, and I. B. W. Gunam, Pakistan J. Analy. & Envir. Chem,. 25, 126 (2024). https://dog.org/10.21743/pjaec/2024.06.12.

2. K. Divya, R. Divyasree, M. Vamsidhar, K. Bhavani, S. B. Bhanja, M. Sudhakar, D. S. Panda, and B. B. Panigrahi, World j. pharm. Pharmac. Sci., 10, 641 (2021). https://dog.org/10.20959/wjpps20214-18643.

3. S. Talegaonkar, A. Azeem, F. J. Ahmad, R. K. Khar, S. A. Pathan, and Z. I. Khan, Rec. pat. drug deliv. Formu., 2, 238 (2008). https://dog.org/10.2174/187221108786241679.

4. N. Kanna, S. Dama, and G. Valavarasu, ChemistrySel., 5, 9214 (2020). https://dog.org/10.1002/slct.202002596.

5. B. Hao and L. Zhong, Adv. Mach. Mate. Sci. Eng. Appl., 24, 110 (2022). https://dog.org/10.3233/ATDE220425.

6. M. B. Bahari, C. R. Mamat, A. A. Jalil, N. S. Hassan, W. Nabgan, H. D. Setiabudi, D. N. Vo, and B. T. P. Thuy, Inter. J. Hydr. Ener., 47, 41507 (2022). https://dog.org/10.1016/j.ijhydene.2021.12.145.

7. S. Sepehri, M. Rezaei, G. Garbarino, and G. Busca, Inter. J. Hydr. Ener., 41, 3456 (2016). https://dog.org/10.1016/j.ijhydene.2015.12.122.

8. Y. Liu, C. Jin, Z. Yang, G. Wu, G. Liu, and Z. Kong, Inter. J. Bio. Macromol., 187, 880 (2021). https://dog.org/10.1016/j.ijbiomac.2021.07.152.

9. M. Saghir, M. A. Umer, A. Ahmed, N. Bint Monir, U. Manzoor, A. Razzaq, L. Xian, K. Mohammad, M. Shahid, and Y. K. Park, Pow. Tech., 383, 84 (2021). https://doi.org/10.1016/j.powtec.2021.01.026.

10. K. Yatsui, T. Yukawa, C. Grigoriu, M. Hirai, and W. Jiang, J. Nanop. Rese., 2, 75 (2000). https://doi.org/10.1023/A:1010090115429.

11. D. F. Niero, O. R. K. Montedo, and A. M. Bernardin, Mater. Sci. Eng., 280, 115690 (2022). https://doi.org/10.1016/j.mseb.2022.115690.

12. R. Kavitha and V. Jayaram, Surf. Coat. Tech., 201, 2491 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.022.

13. L. Qu, C. He, Y. Yang, Y. He, and Z. Liu, Mater. Letter., 59, 4034 (2005). https://doi.org/10.1016/j.matlet.2005.07.059.

14. S. Ghosh and M. K. Naskar, RSC Advance., 3, 4207 (2013). https://doi.org/10.1039/C3RA22793F.

15. Z. Wu, Q. Li, D. Feng, P. A. Webley, and D. Zhao, J. Amer. Chem. Soci., 132, 12042 (2010). https://doi.org/10.1021/ja104379a.

16. W. Wu, M. Zhu, and D. Zhang, Micr. Meso. Mater., 260, 9 (2018). https://doi.org/10.1016/j.micromeso.2017.10.017.

17. Q. B. Chang, X. Wang, J. E. Zhou, and Y. Q. Wang, Advan. Mater. Res., 412, 199 (2012). https://doi.org/10.4028/www.scientific.net/AMR.412.199.

18. X. Zhang, F. Zhang, and K. Y. Chan, Mater. Let., 58, 2872 (2004). https://doi.org/10.1016/j.matlet.2004.05.008.

19. M. H. A. Shiraz, M. Rezaei, and F. Meshkani, Inter. J. Hyd. Ene., 41, 6353 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.017.

20. M. Pourmadadi, A. Farokh, E. Rahmani, A. Shamsabadipour, M. M. Eshaghi, A. Rahdar, and L. F. R. Ferreira, J. Drug Deliv. Sci. Tech., 77, 103877 (2022). https://doi.org/10.1016/j.jddst.2022.103877.

21. S. H. Kareem. In IOP Conference Series: Materials Science and Engineering, Karbala, 2020, IOP Publishing, (871, 012020). https://doi.org/10.1088/1757-899X/871/1/012020.

22. E. A. Hussein, In AIP Conference Proceedings, Karbala, 2021, AIP Publishing, (547, 040001), https://doi.org/10.1063/5.0116063.

23. M. A. Sachit and S. H. Kareem, Ibn AL-Haitham J. Pure and Appl. Sci., 37, 345 (2024). https://doi.org/10.30526/37.2.3410.

24. S. K. Dawood and S. H. Kareem, Bagh. Sci. J., 22, 813 (2024). https://doi.org/10.21123/bsj.2024.11137.

25. M. Salvador, G. Gutiérrez, S. Noriega, A. Moyano, M. C. Blanco-López, and M. Matos, Inter. J. molec. Sci., 22, 427 (2021). https://doi.org/10.3390/ijms22010427.

26. A. L. Doadrio, J. M. Sánchez-Montero, J. C. Doadrio, A. J. Salinas, and M. Vallet-Regí, Euro. J. Pharm. Sci., 97, 1 (2017). https://doi.org/10.1016/j.ejps.2016.11.002.

27. N. Kanna, S. Dama, and G. Valavarasu, ChemistrySel., 5, 9214 (2020). https://doi.org/10.1002/slct.202002596.

28. A. B. Mokaizh, In IOP Conference Series: Earth and Environmental Science ,2021, IOP Publishing. (641, 012023). https://doi.org/10.3390/ma15093046.

29. L. Luo, W. Cai, J. Zhou, and Y. Li, J. Hazar. Mater., 318, 452 (2016). https://doi.org/10.1016/j.jhazmat.2016.07.019.

30. Y. Zhang, H. Yang, Q. Liu, and B. Bian, Ene. Tech., 8, 2000165 (2020). https://doi.org/10.1002/ente.202000165.

31. M. A. Sachit and S. H. Kareem, Baghdad Sci. J., 21, 1029 (2024). https://doi.org/10.21123/bsj.2023.8827.

32. M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S. Sing, Pur. Appl. Chem., 87, 1051 (2015). https://doi.org/10.1515/pac-2014-1117.

33. S. N. S. Mohamad, In IOP Conference Series: Materials Science and Engineering, Penang, 2019, IOP Publishing. (701, 012034). https://doi.org/10.1088/1757-899X/701/1/012034.

34. H. H. Al-Moameri, Z. M. Nahi, D. R. Rzaij, and N. T. Al-Sharify, J. Eng. Sust. Devel., 24, 28 (2020). https://doi.org/10.31272/jeasd.24.5.5.

35. M. Tadic, M. Panjan, B. V. Tadic, S. Kralj, and J. Lazovic, Ceram. Inter., 48, 10004 (2022). https://doi.org/10.1016/j.ceramint.2021.12.209.