Synthesis and Anti-Corrosion Resistance of Polyacrylonitrile-Based Nanocomposites with Moringa-Extracted Nickel and Vanadium Oxide Nanoparticles
Main Article Content
Abstract
This study aims to enhance the corrosion resistance of carbon steel (45 alloys) in saline water (3.5% NaCl) by applying a polymer nanocomposite coating. The nanocomposite was synthesized by integrating nickel oxide (NiO) and vanadium oxide (V₂O5) nanoparticles, produced via a green synthesis method using moringa extract, into a polyacrylonitrile (PA) matrix. The coating's performance was evaluated across a range of temperatures: 293, 303, 313, and 323 K, achieving an inhibition efficiency of up to 89% at 303 K. The created nanocomposites were carefully examined using various testing methods, such as atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). AFM analysis revealed particle sizes of 44.5 nm for NiO and 54.47 nm for V₂O5, while TEM images indicated nonhomogeneous spherical morphologies. FT-IR and XRD showed that the nanoparticles were successfully added to the polymer, and TGA/DSC tests proved that the nanocomposites can withstand high temperatures. The results indicate that these nanocomposites could be very useful as strong corrosion protectors, improving the safety of carbon steel in harsh conditions.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. M. Jamzad and M. Kamari Bidkorpeh, J. Nanostruct. Chem., 10, 193 (2020). DOI: https://doi.org/10.1007/s40097-020-00341-1
2. N. A. Khudhair, A. T. Bader, M. I. Ali, and M. Husseini, AIP Conf. Proc. 2290, 030014 (2020). DOI: https://doi.org/10.1063/5.0027443
3. N. A. Khudhair and A. M. A. Al-Sammarraie, Iraqi J. Sci., 60, 1898 (2019). DOI: https://doi.org/10.24996/ijs.2019.60.9.2.
4. C. Prasad, H. Tang, and W. Liu, J. Nanostruct. Chem., 8, 393 (2018). DOI: https://doi.org/10.1007/s40097-018-0289-y
5. M. D. M. Ali, M. Husseini, and N. A. Khudhair, IOP Conf. Ser.: Earth Environ. Sci. 877, 012007 (2021). DOI: https://doi.org/10.1088/1755-1315/877/1/012007
6. M. AL-Sammarraie, Baghdad Sci. J. 17, 0093 (2020). DOI: http://dx.doi.org/10.21123/bsj.2020.17.1.0093
7. Mohammed, R. and H. Almashhadani,. Int. J. Corros. Scale Inhib, 12, 1180 (2023) DOI:https://dx.doi.org/10.17675/2305-6894-2023-12-3-21
8. J. Wang and S. Kaskel, J. Mater. Chem. 22, 23710 (2012). DOI: https://doi.org/10.1039/C2JM34066F.
9. S. Wang, C. Xiao, Y. Xing, H. Xu, and S. Zhang, J. Mater. Chem. A, 3, 15591 (2015). DOI: https://doi.org/10.1039/C5TA03787E
10. M. A. Salam, M. Mokhtar, S. N. Basahel, S. A. Al-Thabaiti, and A. Y.Obaid, J. Alloys Compd., 500, 87 (2010). DOI: https://doi.org/10.1016/j.jallcom.2010.03.217.
11. Z. Abdin, M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, S. Mekhilef, and A. Wadi, J. Renew. Sust. Energ. Rev. 26, 837 (2013). DOI: https://doi.org/10.1016/j.rser.2013.06.023
12. M. A. Deyab, J. Mol. Liq., 313, 113533 (2020). DOI: https://doi.org/10.1016/j.molliq.2020.113533P
13. G. Chala, J. Chem. Rev., 5, 1(2023). DOI: https://doi.org/10.22034/jcr.2023.356745.1184.
14. D. Hall, D. Zanchet, and J. Ugarte, J. Appl. Crystallogr. 33, 1335 (2000). DOI: https://doi.org/10.1107/S0021889800010888
15. B. He, S-J Shuai, J-X Wang, H. He, Atmospheric Environment, 18, 2 (2003). DOI: https://doi.org/10.1016/j.atmosenv.2003.08.029
16. I. Hassan, N. M. Baba, M. E. Benin, and A. H. Labulo, J. Umm Al-Qura Univ. Appl. Sci., 10, 379 (2024). DOI: https://doi.org/10.1007/s43994-023-00106-w
17. M. A. Al-Issa, J. R. Ugal, and M. N. B. Al-Baiati, Baghdad Sci. J. 5, 131 (2008). DOI: https://doi.org/10.21123/bsj.2008.5.1.131-13
18. D. S. Maki, N. K. Nemer, S. M. Uosof, and S. N. Mohi, Iraqi J. Sci., 99 (2019).
19. N. Afsharimani, A. Durán, D. Galusek, and Y. Castro, Nanomaterials, 10, 1050 (2020). DOI: https://doi.org/10.3390/nano10061050
20. Q. Kaddou and K. A. Al-Horani, Baghdad Sci. J. 2, 533 (2021). DOI: https://doi.org/10.21123/bsj.2005.647
21. J. Abdi, M. Izadi, and M. Bozorg, Sci. Rep., 12, 10660 (2022). DOI: https://doi.org/10.1038/s41598-022-14854-y
22. S. W. A. Aldeen, and N. M. Abbass, Chem. Methodol., 7, 81 (2023). DOI: https://doi.org/10.22034/chemm.2023.357626.1598
23. R. Whba, M. S. Su’ait, F. Whba, and A. Ahmad, Journal of Power Scource, 606, 234539 (2024). DOI: https://doi.org/10.1016/j.jpowsour.2024.234539
24. N. Liu, X. Zhang, E. He, W. Zhou, L. Yu, and X. Yan, Appl. Surf. Sci. 568, 150937 (2021). DOI: https://doi.org/10.1016/j.apsusc.2021.150937.
25. Z. Momenzadeh, M. Ashjari, E. Nemati Lay, and M. Paki, Adv. Compos. Mater., 15 (2024). DOI: https://doi.org/10.1080/09243046.2024.2387413
26. D. Ahmed, and B.I. Al-Abdaly, Solid State Technology, 64, 3945-3959 (2021).
27. A.A. Farag, Corrosion Reviews, 38(1): 67 (2020). DOI: https://doi.org/10.1515/corrrev-2019-0011
28. N. Talavera, M. Navarro, A. Sifontes, Y.Díaz, H. Villalobos, G. Niño-Vega, and S.G. Pandalai, Recent research developments in materials science, 10, 89 (2013).
29. Abdul-Zahra, M. A., & Abbass, N. M., Iraqi J. Sci., 65, 623 (2024). DOI: https://doi.org/10.24996/ijs.2024.65.2.4.
30. Z. Z. Almarbd and N. M. Abbass, Chem. Methodol.,, 6, 940 (2022). DOI: https://doi.org/10.22034/chemm.2022.359620.1603.
31. W. Hua, X. Xu, X. Zhang, H. Yan, and J. Zhang, J. Journal of Energy Storage, 56, 105883 (2022). DOI: https://doi.org/10.1016/j.est.2022.105883