An Investigation on the Rectifying Characteristics of PVA/Y2O3 Nanofibers

Main Article Content

Ahmed Jumaah noori
Iftikhar Mahmud Ali
https://orcid.org/0009-0004-1540-3360

Abstract

An electrospinning approach was used to synthesize composite nanofibers of polyvinyl alcohol (PVA) doped with different concentrations (2.5, 5, and 10 wt%) of Yttrium Oxide (Y2O3). The XRD diffraction pattern revealed a cubic structure of the prepared nanocomposite. The optical characteristics of pure PVA films and PVA/Y2O3 at different ratios were studied, where the energy gap decreases with the increase of Y2O3 concentration. The morphology and the functional group of the prepared samples were characterized using field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR) spectrophotometry, respectively. Field emission scanning electron microscopy (FESEM) FESEM (images confirm the formation of well-defined nanofibers with variations in fibre diameter as the Y₂O₃ content increases, while FTIR spectra reveal characteristic functional groups associated with both PVA and Y₂O₃. Finally, the current-voltage (I-V) characterization of PVA and PVA/ was measured at room temperature using a Keithley Electrometer, where the results show the non-Ohmic behaviors. Indicating potential applications in electronic and sensing devices.

Article Details

Section

Articles

How to Cite

1.
Jumaah A, Mahmud I. An Investigation on the Rectifying Characteristics of PVA/Y2O3 Nanofibers. IJP [Internet]. 2025 Mar. 1 [cited 2025 Mar. 3];23(1):103-1. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1359

References

1. R. H. Almuswy and A. H. Ahmad, Iraqi J. Phys. 20, 13 (2022). DOI: 10.30723/ijp.v20i3.1008.

2. H. M. Alhusaiki Alghamdi, Opt. Mat. 134, 113101 (2022). DOI: 10.1016/j.optmat.2022.113101.

3. Y. R. Kumar, J. G. Thangamani, T. K. Karthik, K. Deshmukh, and S. K. Pasha, RSC Adv. 14, 5022 (2024). DOI: 10.1039/D3RA04257J.

4. A. Manjunath, M. Irfan, K. P. Anushree, K. M. Vinutha, and N. Yamunarani, Adv. Mat. Phys. Chem. Mat. 6, 263 (2016). DOI: 10.4236/ampc.2016.610026.

5. M. H. Abbas, A. Hadi, B. H. Rabee, M. A. Habeeb, M. K. Mohammed, and A. Hashim, J. Comp. Adv. Mat. 33, 261 (2023). DOI: 18280/rcma.330407.

6. Y. Yoon, P. L. Truong, D. Lee, and S. H. Ko, ACS Nanosci. Au 2, 64 (2022). DOI: 10.1021/acsnanoscienceau.1c00029.

7. Z. Alhalili, Molecules 28, 3086 (2023). DOI: 10.3390/molecules28073086.

8. M. A. Siddiq, M. Sopaih, and E. Elgazzar, ACS Omega 8, 24883 (2023). DOI: 10.1021/acsomega.3c00962.

9. Z. A. Alrowaili, T. A. Taha, K. S. El-Nasser, and H. Donya, J. Inorg. Organomet. Poly. Mat. 31, 3101 (2021). DOI: 10.1007/s10904-021-01995-2.

10. Q. Cheng, V. Pavlinek, C. Li, A. Lengalova, Y. He, and P. Saha, Appl. Surf. Sci. 253, 1736 (2006). DOI: 10.1016/j.apsusc.2006.03.004.

11. M. Rashad, Opt. Mat. 105, 109857 (2020). DOI: 10.1016/j.optmat.2020.109857.

12. R. Ricciardi, F. Auriemma, C. De Rosa, and F. Lauprêtre, Macromolecules 37, 1921 (2004). DOI: 10.1021/ma035663q.

13. M. I. Hasan, N. A. Bakr, and I. M. Ibrahim, J. Electron. Mater. 50, 2716 (2021). DOI: 10.1007/s11664-021-08790-2.

14. F. K. Jawad and N. a. A. Al-Tememee, Iraqi J. Sci. 64, 4436 (2023). DOI: 10.24996/ijs.2023.64.9.13.

15. Q. M. Al-Bataineh, A. M. Alsaad, A. A. Ahmad, and A. Telfah, Heliyon 6, e04177 (2020). DOI: 10.1016/j.heliyon.2020.e04177.

16. A. M. Al-Fa'ouri, O. A. Lafi, H. H. Abu-Safe, and M. Abu-Kharma, Arabian J. Chem. 16, 104535 (2023). DOI: 10.1016/j.arabjc.2022.104535.

17. N. K. Abbas, Z. J. Shanan, and T. H. Mohammed, Baghdad Sci. J. 19, 0217 (2022). DOI: 10.21123/bsj.2022.19.1.0217.

18. K. Sk, V. N, B. Rb, and S. Madivalappa, Sol. St. Commun. 370, 115221 (2023). DOI: 10.1016/j.ssc.2023.115221.

19. F. El-Sayed, M. I. Mohammed, and I. S. Yahia, J. Mater. Sci. Mater. Electron. 31, 10408 (2020). DOI: 10.1007/s10854-020-03589-z.

20. M. Aslam, M. A. Kalyar, and Z. A. Raza, Polym. Bull. 78, 1551 (2021). DOI: 10.1007/s00289-020-03173-9.

21. F. Aljubouri and M. Kadhim Jawad, Iraqi J. Phys. 21, 1 (2023). DOI: 10.30723/ijp.v21i1.1093.

22. J. H. Taha, N. K. Abbas, and A. A. Al-Attraqchi, Int. J. Drug Deliv. Tech. 10, 378. DOI: 10.25258/ijddt.10.3.13.

23. Z. K. Heiba, M. B. Mohamed, S. I. Ahmed, and A. A. Alhazime, J. Vinyl. Addit. Technol. 27, 410 (2021). DOI: 10.1002/vnl.21815.

24. A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, Indonesian J. Sci. Tech. 4, 97 (2024). DOI: 10.17509/ijost.v4i1.15806.

25. N. R. Dhineshbabu, V. Rajendran, N. Nithyavathy, and R. Vetumperumal, Appl. Nanosci. 6, 933 (2016). DOI: 10.1007/s13204-015-0499-2.

26. F. M. Ali, I. M. Ashraf, and S. M. Alqahtani, Phys. B Cond. Matt. 527, 24 (2017). DOI: 10.1016/j.physb.2017.09.107.

27. A. M. El Sayed, S. El-Gamal, W. M. Morsi, and G. Mohammed, J. Mater. Sci. 50, 4717 (2015). DOI: 10.1007/s10853-015-9023-z.

28. I. Jabbari, M. Baira, H. Maaref, and R. Mghaieth, Sol. St. Commun. 314-315, 113920 (2020). DOI: 10.1016/j.ssc.2020.113920.

29. C.-W. Nahm, J. Korean Ceram. Soc. 55, 504 (2018). DOI: 10.4191/kcers.2018.55.5.10.

Similar Articles

You may also start an advanced similarity search for this article.