Influence of Magnetic Mirror on the Emission Spectra of DBD Actuator
Main Article Content
Abstract
The research investigated the effect of magnetic mirror configuration on the properties of plasma formed in a dielectric barrier discharge (DBD) actuator under atmospheric pressure. The discharge was formed when a high alternating voltage of 22 kV at a frequency of 9 kHz was applied between the electrodes under atmospheric pressure. The magnetic mirror was created when two permanent magnets were placed behind the electrodes. Plasma emission spectra were detected using a photoemission spectrometer at different horizontal distances (D) between the dielectric and the actuator, ranging from 0 to 5 cm. The effect of the magnetic mirror on the plasma properties at different horizontal distances was studied. The results indicated that the value of electron temperature increases with an increase in the horizontal distance at a smaller rate in the presence of the magnetic mirror configuration. The decrease in the surface area of the electrode led to a significant increase in the electron number density in the presence of the magnetic field. The magnetic mirror affected the value of all the plasma properties studied. At the same time, there was no effect on the behaviour of plasma properties in the presence of magnetic mirror configurations.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
Abdollahzadeh, M., J. C. Pascoa, and P. J. Oliveira. Current Applied Physics .14,8 (2014). https://doi.org/10.1016/j.cap.2014.05.016
Jayaraman, Balaji, Siddharth Thakur, and Wei Shyy. (2007): 517-525. https://doi.org/10.1115/1.2709659
Font, Gabriel I. AIAA journal .44,7 (2006). https://doi.org/10.2514/1.18542
Grundmann, Sven, and Cameron Tropea. International Journal of Heat and Fluid Flow .30,3 (2009). https://doi.org/10.1016/j.ijheatfluidflow.2009.03.004
Messanelli, Federico, and Marco Belan. 55th AIAA Aerospace Sciences Meeting. (2017). https://doi.org/10.2514/6.2017-0395
Christopher Kelley, Patrick Bowles, John Cooney, Chuan He, Thomas Corke, Brad Osborne, Joseph Silkey and Joseph Zehnle. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. (2012). https://doi.org/10.2514/6.2012-906
Kozlov, Alexey V. Plasma actuators for bluff body flow control. University of Notre Dame, (2010).
Thomas, Flint O., Alexey Kozlov, and Thomas C. Corke. AIAA journal .46,8 (2008). https://doi.org/10.2514/1.27821
Roy, Subrata, and Chin-Cheng Wang. Journal of Thermophysics and Heat Transfer .27,3 (2013). https://doi.org/10.2514/1.T3945
Jin-Lu Yu, Li-ming He, Yi-fei Zhu, Wei Ding & Yu-qian Wang. Heat and Mass Transfer .49 (2013). https://doi.org/10.1007/s00231-013-1157-4
Grundmann, Sven, and Cameron Tropea. International Journal of Heat and Fluid Flow .30,3 (2009). https://doi.org/10.1016/j.ijheatfluidflow.2009.03.004
Grundmann, Sven, and Cameron Tropea. Experiments in Fluids .44 (2008).
https://doi.org/10.1007/s00348-007-0436-6
F. Rodrigues, José C. Páscoa, F. Dias, M. Abdollahzadeh. ASME International Mechanical Engineering Congress and Exposition. Vol. 57342. (2015). https://doi.org/10.1115/IMECE2015-52193
F. F. Rodrigues, J. C. Pascoa, M. Trancossi. ASME International Mechanical Engineering Congress and Exposition. 1. (2016). https://doi.org/10.1115/IMECE2016-66495
Corke, Thomas C., C. Lon Enloe, and Stephen P. Wilkinson. Annual review of fluid mechanics .42 (2010). https://doi.org/10.1146/annurev-fluid-121108-145550
Flaxer, Eli, IEEE 27th Convention of Electrical and Electronics Engineers in Israel. IEEE, (2012). DOI: 10.1109/EEEI.2012.6377054
Abd, Aseel Kamel, and Qusay Adnan Abbas. Iraqi Journal of Science .64 (2023). DOI: 10.24996/ijs.2023.64.6.17
Khaleel, Sarah Faris, and Qusay Adnan Abbas. Vol. 2114. )2021(. DOI 10.1088/1742-6596/2114/1/012042
Shimizu, Kazuo, and Marius Blajan. "Dielectric barrier discharge microplasma actuator for flow control." Actuators. London, UK, (2018). http://dx.doi.org/10.5772/intechopen.75802
Roth, J. Reece, Daniel M. Sherman, and Stephen P. Wilkinson. AIAA journal 38,7 (2000). https://doi.org/10.2514/2.1110
Saleh, Sarmad H., Intesar H. Hashim, and Kadhim A. Aadim. مجلة المستنصرية للعلوم والتربية 20.3 (2019): 151-158.
Guo, Song. An investigation of dielectric barrier discharge based plasma actuator designs with enhanced performance in active flow control. University of Minnesota, (2013). 3567429
J.Y Park, G. H. Kim, J. D. Kim, H.S. KOH &D.C. Lee. " 133,1-3 (1998). https://doi.org/10.1080/00102209808952027
Wang Changquan, Zhang Guixin, Wang Xinxin and Chen Zhiyu. Plasma Science and Technology 14,10 (2012). DOI 10.1088/1009-0630/14/10/07
Liu, Yidi, Huijie Yan, Hongfei Guo, Zhihui Fan, Yuying Wang, Yun Wu, Chunsheng Ren. Physics of Plasmas, 25 (2018). https://doi.org/10.1063/1.5016898
Bard, Alaa Khamees, and Qusay Adnan Abbas. Iraqi Journal of Science,63 (2022). DOI: 10.24996/ijs.2022.63.8.17
Hussein, Mohammed Ubaid, and Thamir H. Khalaf. Eng. &Tech. Journal, Vol. 33, Part (B), No.6, (2015).
Chen, Francis F., and Francis F. Chen. "Plasma applications." Introduction to Plasma Physics and Controlled Fusion (2016): 355-411. https://doi.org/10.1007/978-3-319-22309-4_11
Abbas, Qusay A., Fadhil Y. Hadi, and Sarmed S. AL-Awadi. Baghdad Science Journal 8 (2011).
Kadhim, Murad M., Qusay A. Abbas, and Mohammed R. Abdulameer. Iraqi Journal of Science 63 (2022). DOI: 10.24996/ijs.2022.63.5.20
Farhan, Ahlam Mohammed, Nafeesa Jabbar Kadhim, and Harith Ibrahem Jaafer. Asian Journal of Applied Science and Engineering 5,3 (2014): 159.
Abd, Aseel Kamel, and Qusay Adnan Abbas. Iraqi Journal of Science, 64 (2023). DOI: 10.24996/ijs.2023.64.4.11
A. El-Zein, M. Talaat, G. El-Aragi, A. El-Amawy. IEEE Transactions on Plasma Science 48,4 (2020). DOI: 10.1109/TPS.2020.2977640
N. Konjević, A. Lesage, J. R. Fuhr, W. L. Wiese. Journal of Physical and Chemical Reference Data 31,3 (2002). https://doi.org/10.1063/1.1486456