Optical Investigation of Reduced Graphene Oxide / Titanium Dioxide Nanocomposite Thin Films Synthesized by Hydrothermal Method

Main Article Content

Linda I. Mohi
https://orcid.org/0009-0002-6304-6922
Ameer F. Abdulameer

Abstract

The growing need for unique optical properties in the manufacturing of electronic devices has led the world to the field of hybrid materials and their composites. In this study, a simple physical technique was used to successfully manufacture hybrid nanocomposites containing nanoparticles of titanium dioxide (TiO2) and reduced graphene oxide (rGO) from tetrabutyl titanate (TBT) and graphene oxide (GO) powder using the hydrothermal method. For two hydrothermal treatment times (12h and 24h), various samples were created: TiO2, rGO, and TiO2/rGO nanocomposites thin films. Fourier transformer infrared (FTIR) spectra of the samples gave clear evidence for the reduction of GO and the engagement of Ti with reduced graphene by the formation of a Ti-O-C bond. The measurement of the energy band gap obtained by the photoluminescence spectrometer shows a decrease in the energy band gap for all samples after the hydrothermal reaction time increases, for the composite, the band gap decreases to 2.65 eV and 2.64 eV.

Article Details

Section

Articles

How to Cite

1.
Mohi LI, Abdulameer AF. Optical Investigation of Reduced Graphene Oxide / Titanium Dioxide Nanocomposite Thin Films Synthesized by Hydrothermal Method. IJP [Internet]. 2024 Mar. 1 [cited 2025 Jan. 4];22(1):75-81. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1197

References

I. Blanco, Appl. Sci. 10, 5456 (2020).

J.-M. García-Martínez and E. P. Collar, Polymers 13, 2390 (2021).

S. Singh, H. Chen, S. Shahrokhi, L. P. Wang, C.-H. Lin, L. Hu, X. Guan, A. Tricoli, Z. J. Xu, and T. Wu, ACS En. Lett. 5, 1487 (2020).

J. Zhang, M. De Souza, C. Creighton, and R. J. Varley, Comp. Part A: Appl. Sci. Manufac. 133, 105870 (2020).

M. Romero, D. Mombrú, F. Pignanelli, R. Faccio, and A. W. Mombrú, Front. Chem. 10, 892013 (2022).

Y. Chujo, Curr. Opin. Sol. Stat. Mat. Sci. 1, 806 (1996).

M. M. Adnan, A. R. Dalod, M. H. Balci, J. Glaum, and M.-A. Einarsrud, Polymers 10, 1129 (2018).

J.-M. García-Martínez and E. P. Collar, Polymers 13, 86 (2020).

D. Bin, W. Huo, Y. Yuan, J. Huang, Y. Liu, Y. Zhang, F. Dong, Y. Wang, and Y. Xia, Chem 6, 968 (2020).

H. Eckert, M. Montagna, A. Dianat, R. Gutierrez, M. Bobeth, and G. Cuniberti, BMC Mat. 2, 1 (2020).

B. R. Gomes, R. B. Figueira, S. P. Costa, M. M. M. Raposo, and C. J. Silva, Polymers 12, 2671 (2020).

B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications (Weinheim, Germany, John Wiley & Sons, 2012).

Q. M. Al-Bataineh, A. A. Ahmad, A. M. Alsaad, and A. Telfah, Polymers 12, 2954 (2020).

A. Köhler, J. S. Wilson, and R. H. Friend, Advan. Mat. 14, 701 (2002).

C. Sanchez and F. Ribot, New J. Chem. 18, 1007 (1994).

G. Kickelbick, Hybrid Materials: Synthesis, Characterization, and Applications (Weinheim, Wiley‐VCH Verlag GmbH & Co. KGaA, 2006).

J. K. Pandey, A. P. Kumar, M. Misra, A. K. Mohanty, L. T. Drzal, and R. Palsingh, J,. Nanosci. Nanotech. 5, 497 (2005).

R. S. Alnayli, H. Alkhazaali, and Z. Hakim, Journal of Physics: Conference Series (IOP Publishing, 2019). p. 012040.

H. M. Aziz, M. H. Al-Mamoori, and L. H. Aboud, Journal of Physics: Conference Series (IOP Publishing, 2021). p. 012206.

K. K. Ng and G. Zheng, Chem. Rev. 115, 11012 (2015).

S. D. Al-Algawi, R. T. R. Rasheed, and Z. R. Rhoomi, Iraqi J. Sci. 58, 1683 (2017).

H. A. Hessain and J. Hassan, Iraqi J. Sci. 61, 1313 (2020).

X. Xiang, Y. Lu, and J. Chen, Acta Chim. Sin. 75, 154 (2017).

B. Tang, H. Chen, H. Peng, Z. Wang, and W. Huang, Nanomaterials 8, 105 (2018).

I. Ali and J.-O. Kim, Catalysts 8, 43 (2018).

F. Nazeer, J. Long, Z. Yang, and C. Li, Nanotechnology 32, 435701 (2021).

C. Cha, S. R. Shin, N. Annabi, M. R. Dokmeci, and A. Khademhosseini, ACS Nano 7, 2891 (2013).

K. M. Al-Qahtani, M. H. Ali, and A. G. Al-Afify, J. Element. 25, 315 (2020).

H. P. Mungse, S. Verma, N. Kumar, B. Sain, and O. P. Khatri, J. Mat. Chem. 22, 5427 (2012).

N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, ACS Nano 4, 887 (2010).

N. Jantarasorn, O. Mekasuwandumrong, P. Kelly, and P. Praserthdam, IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2019). p. 012017.

J.-G. Yu, H.-G. Yu, B. Cheng, X.-J. Zhao, J. C. Yu, and W.-K. Ho, J. Phys. Chem. B 107, 13871 (2003).

G. a. S. Juárez, E. G. Barojas, E. Quiroga-González, E. Sánchez-Mora, and J. D. Santamaría-Juárez, Euro. J. Eng. Tech. Res. 4, 165 (2019).

A. Daway Thamir, A. J Haider, and G. A Ali, Eng. Tech. J. 34, 193 (2016).

R. A. Abd Ali, M. R. Al-Bahrani, and H. H. Waried, NeuroQuantology 20, 5338 (2022).

Z. Ye, L. Zhao, A. Nikiforov, J.-M. Giraudon, Y. Chen, J. Wang, and X. Tu, Advan. Coll. Inter. Sci. 308, 102755 (2022).

Y. Wang and N. Herron, J. Phys. Chem. 92, 4988 (1988).

M. Rajabi and S. Shogh, J. Lumin. 157, 235 (2015).

D. Xu, P. Wang, and B. Shen, Dig. J. Nanomat. Biostruct. 11, 15 (2016).

J. S. Park, S. M. Cho, W.-J. Kim, J. Park, and P. J. Yoo, ACS Appl. Mat. Inter. 3, 360 (2011).

K. Li, Y. Zhu, Y. Zhang, D. Zhang, J. Zhou, X. Li, and S. Ruan, Nanotechnology 30, 295502 (2019).

F. Dai, S. Zhang, Q. Wang, H. Chen, C. Chen, G. Qian, and Y. Yu, Front. Chem. 9, 753741 (2021).

Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. A. Gray, Envir. Sci. Tech. 42, 4952 (2008).

Similar Articles

You may also start an advanced similarity search for this article.