A Study the Addition of Silver Dioxide on Some Optical Properties of Phosphate Bioactive Glass
Main Article Content
Abstract
This study investigates the influence of silver oxide (Ag2O) concentration on the optical characteristics of phosphate bioactive glasses (PBGs). PBGs have emerged as promising alternatives to conventional silicate glasses in the medical field due to their excellent bioactivity and chemical resistance. Samples with varying Ag2O concentrations (0, 0.25, 0.5, and 0.75g) were sintered at 780°C for 2 hrs in an electric furnace. The samples were subjected to Fourier transfer infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) tests to assess their functional groups and optical properties. By analyzing the FTIR spectrum of phosphate bioactive glass containing different amounts of Ag2O, it is possible to identify changes in the vibrational modes associated with Ag-O bonds and to gain insights into the structure and composition of the material. Because Ag-O bonds exhibit infrared vibrational modes, introducing Ag2O changed the FTIR spectrum. As Ag2O concentration increased, Ag-O vibrational modes strengthened, indicating more Ag-O bonds. UV-Vis spectroscopy, with increasing Ag2O concentration, the peak location shifted towards shorter wavelengths. Optical spectra show distinct UV absorption in the prepared glass spectrum, extending to near visible with increasing Ag2O content. The PL spectra peaks and band gap energies revealed that Ag2O altered the glass's electrical structure and optical activity. These discoveries help optimize metal-phosphate bi-active glass for biomedical implants and UV-blocking coatings. The melting-annealing technique prepared glasses based on the base host Na2O-CaF2-P2O5 system with increasing Ag2O as additives or loading (0.2 to 1 wt%).
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
D. K. Al-Nasrawy, I. M. Abdulmajeed, F. T. Noori, A. H. Abaid, and K. M. Thajeel, J. Kufa Phys. 3, 30, (2019).
C. Li, C. Wang, A. R. Boccaccini, and K. Zheng, J. Non-Cryst. Sol. X 17, 100159 (2023).
V. A. Gobbo, V. S. Parihar, M. Prato, M. Kellomäki, E. Verne, S. Spriano, and J. Massera, Ceram. Int. 49, 1261 (2023).
A. Elrayah, D. Xiao, E. Suliman, and J. Weng, Ceram. Int. 45, 18931 (2019).
T. A. Kareem and D. K. Mahdi, Eurasian Chem. Commun. 4, 330 (2022).
A. Elrayah, J. Weng, and E. Suliman, 2019 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE) (Khartoum, Sudan IEEE, 2019). p. 1.
D. S. Brauer, Angewan. Chem. Int. Ed. 54, 4160 (2015).
L. C. A. Da Silva, F. G. Neto, S. S. C. Pimentel, R. Da Silva Palácios, F. Sato, K. M. Retamiro, N. S. Fernandes, C. V. Nakamura, F. Pedrochi, and A. Steimacher, J. Non-Cryst. Sol. 554, 120611 (2021).
S. Naseri, G. Griffanti, W. C. Lepry, V. B. Maisuria, N. Tufenkji, and S. N. Nazhat, J. American Ceram. Soci. 105, 1711 (2022).
A. Rahimnejad Yazdi, L. Torkan, W. Stone, and M. R. Towler, J. Biomed. Mat. Res. B Appl. Biomat. 106, 367 (2018).
C. Bergmann, M. Lindner, W. Zhang, K. Koczur, A. Kirsten, R. Telle, and H. Fischer, J. the European Ceram. Soci. 30, 2563 (2010).
K. A. Cole, G. A. Funk, M. N. Rahaman, and T. E. Mciff, J. Biomed. Mat. Res. B Appl. Biomat. 108, 2765 (2020).
E. A. Abou Neel, D. M. Pickup, S. P. Valappil, R. J. Newport, and J. C. Knowles, J. Mat. Chem. 19, 690 (2009).
C. R. Arciola, D. Campoccia, and L. Montanaro, Nat. Rev. Microbio. 16, 397 (2018).
H. N. Wilkinson, S. Iveson, P. Catherall, and M. J. Hardman, Front. Microbio. 9, 337311 (2018).
V. Dhivya, G. Rajkumar, S. Mahalaxmi, K. Rajkumar, B. S. Karthikeyan, S. Kavitha, R. Karpagam, K. Sakthipandi, and G. Sathishkumar, Ceram. Int. 48, 25346 (2022).
Z. Xu, C. Zhang, X. Wang, and D. Liu, ACS Appl. Bio. Mat. 4, 3985 (2021).
F. M. Aldakheel, M. M. E. Sayed, D. Mohsen, M. H. Fagir, and D. K. El Dein, Gels 9, 530 (2023).
F. Foroutan, B. A. Kyffin, A. Nikolaou, J. Merino-Gutierrez, I. Abrahams, N. Kanwal, J. C. Knowles, A. J. Smith, G. J. Smales, and D. Carta, RSC Advances 13, 19662 (2023).
Z. H. Dhoondia and H. Chakraborty, Nanomat. Nanotech. 2, 15 (2012).
S. Sagadevan, Int. J. Nanoelect. Mat. 9, 37 (2016).
B. Karmakar, Funct. Glas. Glas. Ceram. Butterworth-Heinemann, 253 (2017).
J. Massera, S. Fagerlund, L. Hupa, and M. Hupa, J. American Ceram. Soci. 95, 607 (2012).
A. R. Boccaccini, P. X. Ma, and L. Liverani, Tissue Engineering Using Ceramics and Polymers (UK, Woodhead Publishing, 2021).
F. N. Raja, T. Worthington, L. P. De Souza, S. B. Hanaei, and R. a. J. Martin, ACS Biomat. Sci. Eng. 8, 1193 (2022).
C. Wen, J. Qian, L. Luo, J. Zeng, B. Sa, X. Zhan, J. Wang, L. Sheng, and Y. Zheng, J. Non-Cryst. Sol. 578, 121329 (2022).
E. Cruces, N. Arancibia-Miranda, K. Manquián-Cerda, F. Perreault, N. Bolan, M. I. Azócar, V. Cubillos, J. Montory, M. A. Rubio, and B. Sarkar, ACS Appl. Nano Mat. 5, 1472 (2022).
W. N. Wan Jusoh, K. A. Matori, M. H. Mohd Zaid, N. Zainuddin, M. Z. Ahmad Khiri, N. A. Abdul Rahman, R. Abdul Jalil, and E. Kul, Materials 14, 954 (2021).
D. Williams, Mat. Today 7, 24 (2004).
S. Thomas, P. Balakrishnan, and M. S. Sreekala, Fundamental biomaterials: ceramics (US, UK, Woodhead Publishing, 2018).
S. M. Rabiee, N. Nazparvar, M. Azizian, D. Vashaee, and L. Tayebi, Ceram. Int. 41, 7241 (2015).
J. Massera, L. Petit, T. Cardinal, J.-J. Videau, M. Hupa, and L. Hupa, J. Mat. Sci. Mat. Med. 24, 1407 (2013).
C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, and Y. Xiao, Biomaterials 34, 422 (2013).
G. Poongodi, P. Anandan, R. M. Kumar, and R. Jayavel, Spectrochim. Acta A Molec. Biomolec. Spectro. 148, 237 (2015).
R. H. Hussian and D. K. Mahdi, E. European J. Phys. 3, 321 (2023).
L. L. Hench, I. D. Xynos, and J. M. Polak, J. Biomat. Sci. Poly. Ed. 15, 543 (2004).
P. Naresh, N. Narsimlu, C. Srinivas, M. Shareefuddin, and K. S. Kumar, J. Non-Cryst. Sol. 549, 120361 (2020).
A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, Indonesian J. Sci. Tech. 4, 97 (2019).
M. Taha, M. Hassan, S. Essa, and Y. Tartor, Int. J. Veterin Sci. Med. 1, 15 (2013).
M. Kuwik, J. Pisarska, and W. A. Pisarski, Materials 13, 4746 (2020).
E. Abdallah, M. Meikhail, A. El-Adawy, H. A. Othman, and A. Abdelghany, J. Bio. Tribo-Corr. 8, 39 (2022).
C. Mariappan and N. Ranga, Ceram. Int. 43, 2196 (2017).
A. L. Stanford and J. M. Tanner, Physics for Students of Science and Engineering (New York, Academic Press, 2014).
A. S. Rao, J. Ashok, B. Suresh, G. N. Raju, N. Venkatramaiah, V. R. Kumar, I. Kityk, and N. Veeraiah, J. All. Comp. 712, 672 (2017).
V. Prasad, B. Suresh, M. Kostrzewa, Y. Gandhi, A. Ingram, A. S. S. Reddy, V. R. Kumar, and N. Veeraiah, J. Non-Cryst. Sol. 500, 460 (2018).
A. Siva Sesha Reddy, A. Ingram, M. G. Brik, M. Kostrzewa, P. Bragiel, V. Ravi Kumar, and N. Veeraiah, J. American Ceram. Soci. 100, 4066 (2017).
A. S. S. Reddy, M. Brik, J. S. Kumar, M. Graça, G. N. Raju, V. R. Kumar, M. Piasecki, and N. Veeraiah, Ceram. Int. 42, 17269 (2016).
A. S. S. Reddy, M. Kostrzewa, A. Ingram, N. Purnachand, P. Bragiel, V. R. Kumar, I. Kityk, and N. Veeraiah, J. European Ceram. Soci. 38, 2010 (2018).