Structural and Magnetic Properties of MnxZn1-xFe2O4 Prepared via Sol-Gel Method
Main Article Content
Abstract
Manganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Manganese-Zinc Ferrite. The FE-SEM results of MnZnF showed uniform spherical structures. VSM was used to study the change in magnetization, the saturation magnetization, (Ms) value of the samples. The measurement of VSM indicated that the MnZnF exhibits ferromagnetic behavior with coercivity Hc (0.0014 Gauss), remanent magnetization (Mr) (0.202 emu/gr), and saturation magnetization Ms (2.69 emu/g).
Received: Jul. 04, 2023
Revised: Aug. 29, 2023
Accepted: Sep.11, 2023
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
D. R. Kumar, C. A. Lincoln, D. Ravinder, and S. I. Ahmad, Appl. Phys. A 126, 705 (2020).
M. M. Ismail and N. A. Jaber, Iraqi J. Phys. 16, 140 (2018).
A. Mary Jacintha, A. Manikandan, K. Chinnaraj, S. Arul Antony, and P. Neeraja, J. Nanosci. Nanotech. 15, 9732 (2015).
S. K. Pendyala, K. Thyagarajan, A. Gurusampath Kumar, and L. Obulapathi, J. Aust. Ceramic Soci. 54, 467 (2018).
M. F. Al-Hilli, Iraqi J. Sci. 57, 2245 (2016).
M. Chand, A. Kumar, S. Kumar, A. Shankar, and R. Pant, Indian J. Eng. Mat. Sci. 18, 385 (2011).
L. Thakur and B. Singh, Integ. Res. Advan. 1, 11 (2014).
R. K. Panda, Doctor of Philosophy Thesis, National Institute of Technology, 2016.
E. C. Abenojar, S. Wickramasinghe, J. Bas-Concepcion, and A. C. S. Samia, Prog. Nat. Sci. Mat. Int. 26, 440 (2016).
P. Tehranian, A. Shokuhfar, and H. Bakhshi, J. Supercond. Nov. Magnet. 32, 1013 (2019).
A. M. Hammeed and Z. R. Muslim, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2020). p. 072019.
M. a. A. Al-Karboli, S. a. H. Al-Dabbagh, and R. M. S. Al-Alwany, Iraqi J. Phys. 16, 79 (2018).
L. Phor, S. Chahal, and V. Kumar, J. Advan. Ceram. 9, 576 (2020).
S. Shamebo and E. Arbaminch, MSc Thesis, Arba Minch,
T. Dippong, E. A. Levei, and O. Cadar, Nanomaterials 11, 1560 (2021).
Z. S. Sadeq, Iraqi J. Sci. 63, 997 (2022).
K. Maaz, J. Duan, S. Karim, Y. Chen, P. Zhai, L. Xu, H. Yao, and J. Liu, J. All. Comp. 684, 656 (2016).
S. Sanatombi, S. Sumitra, and S. Ibetombi, Iranian J. Sci. Tech. Trans. A: Sci. 42, 2397 (2018).
B. K. Mohammed, Iraqi J. Sci. 58, 848 (2017).
N. Matsushita, K. Kondo, S. Yoshida, M. Tada, M. Yoshimura, and M. Abe, J. Electroceram. 16, 557 (2006).
M. Li, H. Fang, H. Li, Y. Zhao, T. Li, H. Pang, J. Tang, and X. Liu, J. Supercond. Novel Magnet. 30, 2275 (2017).
H. Sharouf and Z. Saffour, Baghdad Sci. J., 1 (2023).
G. Kogias and V. Zaspalis, Ceram. Int. 42, 7639 (2016).
P. Andalib, Y. Chen, and V. G. Harris, IEEE Magnet. Lett. 9, 1 (2017).
M. Latorre-Esteves, A. Cortes, M. Torres-Lugo, and C. Rinaldi, J. Magnet. Magnet. Mat. 321, 3061 (2009).
Y. Ying, Y. Gong, D. Liu, W. Li, J. Yu, L. Jiang, and S. Che, J. Supercond. Novel Magnet. 30, 2129 (2017).
D. H. K. Reddy and Y.-S. Yun, Coord. Chem. Rev. 315, 90 (2016).
J. Stergar, Z. Jirák, P. Veverka, L. Kubíčková, T. Vrba, J. Kuličková, K. Knížek, F. Porcher, J. Kohout, and O. Kaman, J. Magnet. Magnet. Mat. 475, 429 (2019).
R. F. Kadhim and Z. R. Muslim, in Journal of Physics: Conference Series (IOP Publishing, 2020). p. 012003.
M. Abbas and M. Rasheed, in Journal of Physics: Conference Series (IOP Publishing, 2021). p. 012059.
F. A. Mutlak, Iraqi J. Phys. 17, 10 (2019).
A. Košak, D. Makovec, A. Žnidaršič, and M. Drofenik, J. European Ceram. Soci. 24, 959 (2004).
J. Feng, R. Xiong, Y. Liu, F. Su, and X. Zhang, J. Mat. Sci. Mat. Elect. 29, 18358 (2018).
K. Rotjanasuworapong, W. Lerdwijitjarud, and A. Sirivat, Nanomaterials 11, 876 (2021).
I. M. Obaidat, B. Issa, and Y. Haik, Nanomaterials 5, 63 (2015).
E. Mazarío, A. Mayoral, E. Salas, N. Menéndez, P. Herrasti, and J. Sánchez-Marcos, Mat. Des. 111, 646 (2016).
R. F. Kadhim, Iraqi J. Phys. 15, 11 (2017).
R. M. Ahmed, S. S. A. Rahman, D. H. Badri, K. M. Sultan, I. Y. Majeed, and G. M. Kamil, Baghdad Sci. J., 1 (2023).
F. Falsafi, B. Hashemi, A. Mirzaei, E. Fazio, F. Neri, N. Donato, S. G. Leonardi, and G. Neri, Ceram. Int. 43, 1029 (2017).
I. Sandu, L. Presmanes, P. Alphonse, and P. Tailhades, Thin Sol. Fil. 495, 130 (2006).
K. Nejati and R. Zabihi, Chem. Cen. J. 6, 1 (2012).
E. A. Ajaj, Z. R. Musleem, and B. M. Al-Shabander, Iraqi J. Phys. 13, 171 (2015).
R. Sharma, S. Bansal, and S. Singhal, RSC Advan. 5, 6006 (2015).
T. Guo, M. Lin, J. Huang, C. Zhou, W. Tian, H. Yu, X. Jiang, J. Ye, Y. Shi, Y. Xiao, X. Bian, and X. Feng, J. Nanomat. 2018, 7805147 (2018).
A. Hakeem, T. Alshahrani, G. Muhammad, M. Alhossainy, A. Laref, A. R. Khan, I. Ali, H. M. T. Farid, T. Ghrib, and S. R. Ejaz, J. Mat. Res. Tech. 11, 158 (2021).
U. S. Sharma and R. Shah, in AIP Conference Proceedings (AIP Publishing, 2020). p.
C. Anumol, M. Chithra, S. Rout, and S. C. Sahoo, J. Supercond. Novel Magnet. 33, 1611 (2020).
H. Moradmard, S. F. Shayesteh, P. Tohidi, Z. Abbas, and M. Khaleghi, J. All. Comp. 650, 116 (2015).
C. Choodamani, B. Rudraswamy, and G. Chandrappa, Ceram. Int. 42, 10565 (2016).
R. Ramzan, M. Tariq, M. N. Ashiq, H. Albalawi, I. Ahmad, M. Alhossainy, S. R. Ejaz, R. Y. Khosa, H. M. T. Farid, and H. M. Khan, J. Mat. Res. Tech. 12, 1104 (2021).