D-Shaped Photonic Crystal Fiber Toxic Metal Ions (Arsenic) Sensor Based on Surface Plasmon Resonance

Main Article Content

Ghufran Mohammed Jassam
https://orcid.org/0000-0003-4124-0548
Soudad Salman Ahmed

Abstract

In this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the structural characteristics on the resonant spectra are also researched in order to improve sensing performance. The greatest amplitude sensitivity  was 99.2 RIU-1 and maximum resolution was 4 x 10-5 RIU achieved within the detection range (1.351-1.363).

Article Details

Section

Articles

Author Biographies

Ghufran Mohammed Jassam, University of Baghdad, College of Science, Department of Physics

 

 

Soudad Salman Ahmed, University of Baghdad/ College of Science/ Department of Physics

 

 

How to Cite

1.
Mohammed Jassam G, Salman Ahmed S. D-Shaped Photonic Crystal Fiber Toxic Metal Ions (Arsenic) Sensor Based on Surface Plasmon Resonance. IJP [Internet]. 2023 Jun. 1 [cited 2025 Jan. 23];21(2):91-8. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1120

References

M. Khatun, M. Islam, and A. Bazlur Rashid, Comput. Eng. Intell. Sys. 3, 1 (2012).

M. A. Islam, M. R. Islam, A. M. Al Naser, F. Anzum, and F. Z. Jaba, J. Comput. Elect. 20, 377 (2021).

R. Gupta, F. Rahi Alhachami, I. Khalid, H. S. Majdi, N. Nisar, Y. Mohamed Hasan, R. Sivaraman, R. M. Romero Parra, Z. I. Al Mashhadani, and Y. Fakri Mustafa, Crit. Rev. Anal. Chem. 0, 1 (2022).

E. Podder, M. B. Hossain, R. H. Jibon, A. a.-M. Bulbul, and H. S. Mondal, Front. Optoelect. 12, 372 (2019).

G. M. Jassam, Iraqi J. Phys. 17, 11 (2019).

N. S. Rahim, S. S. Ahmed, and M. F. Sultan, Iraqi J. Sci. 61, 1650 (2020).

E. Khatar and S. S. Bassam, Iraqi J. Phys. 19, 51 (2021).

N. S. Rahim, Iraqi J. Phys. 17, 41 (2019).

G. M. Jassam, S. S. Alâ, and M. F. Sultan, Iraqi J. Sci. 61, 765 (2020).

N. Muhammed, A. Mahmood, S. A. Kadhim, and I. Naseef, J. Phys.: Conf. Ser. (IOP Publishing, 2020). p. 012134.

S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, Resul. Phys. 11, 577 (2018).

K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, Resul. Phys. 12, 2021 (2019).

H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, ACS Sens. 4, 704 (2019).

A. K. Paul, OSA Contin. 3, 2253 (2020).

M. Li, J. Xu, Q. Zheng, C. Guo, and Y. Chen, Analyt. Chem. 94, 7238 (2022).

M. T. Rahman, S. Datto, and M. N. Sakib, OSA Contin. 4, 1808 (2021).

A. A. Rifat, M. R. Hasan, R. Ahmed, and H. Butt, J. Nanophot. 12, 012503 (2018).

A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, Sensors 15, 11499 (2015).

A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. E. Miroshnichenko, Opt. lett. 43, 891 (2018).

A. I. Mahmood, R. K. Ibrahim, A. I. Mahmood, and Z. K. Ibrahim, J. Phys.: Conf. Ser. (IOP Publishing, 2018). p. 012118.

W. Sellmeier, Annal. der Phys. Chem. 219, 272 (1871).

G. Agrawal, Nonlinear Fiber Optics. 5th Ed. (UK, USA, Elesevier, Academic Press, 2001).

G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, Opt. Quant Elect. 48, 1 (2016).

A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. Shee, and F. M. Adikan, Opt. Expre. 24, 2485 (2016).

Similar Articles

You may also start an advanced similarity search for this article.