D-Shaped Photonic Crystal Fiber Toxic Metal Ions (Arsenic) Sensor Based on Surface Plasmon Resonance
Main Article Content
Abstract
In this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the structural characteristics on the resonant spectra are also researched in order to improve sensing performance. The greatest amplitude sensitivity was 99.2 RIU-1 and maximum resolution was 4 x 10-5 RIU achieved within the detection range (1.351-1.363).
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
M. Khatun, M. Islam, and A. Bazlur Rashid, Comput. Eng. Intell. Sys. 3, 1 (2012).
M. A. Islam, M. R. Islam, A. M. Al Naser, F. Anzum, and F. Z. Jaba, J. Comput. Elect. 20, 377 (2021).
R. Gupta, F. Rahi Alhachami, I. Khalid, H. S. Majdi, N. Nisar, Y. Mohamed Hasan, R. Sivaraman, R. M. Romero Parra, Z. I. Al Mashhadani, and Y. Fakri Mustafa, Crit. Rev. Anal. Chem. 0, 1 (2022).
E. Podder, M. B. Hossain, R. H. Jibon, A. a.-M. Bulbul, and H. S. Mondal, Front. Optoelect. 12, 372 (2019).
G. M. Jassam, Iraqi J. Phys. 17, 11 (2019).
N. S. Rahim, S. S. Ahmed, and M. F. Sultan, Iraqi J. Sci. 61, 1650 (2020).
E. Khatar and S. S. Bassam, Iraqi J. Phys. 19, 51 (2021).
N. S. Rahim, Iraqi J. Phys. 17, 41 (2019).
G. M. Jassam, S. S. Alâ, and M. F. Sultan, Iraqi J. Sci. 61, 765 (2020).
N. Muhammed, A. Mahmood, S. A. Kadhim, and I. Naseef, J. Phys.: Conf. Ser. (IOP Publishing, 2020). p. 012134.
S. Maheswaran, P. Kuppusamy, S. Ramesh, T. Sundararajan, and P. Yupapin, Resul. Phys. 11, 577 (2018).
K. Ahmed, B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. Amiri, and P. Yupapin, Resul. Phys. 12, 2021 (2019).
H. Yuan, W. Ji, S. Chu, Q. Liu, S. Qian, J. Guang, J. Wang, X. Han, J.-F. Masson, and W. Peng, ACS Sens. 4, 704 (2019).
A. K. Paul, OSA Contin. 3, 2253 (2020).
M. Li, J. Xu, Q. Zheng, C. Guo, and Y. Chen, Analyt. Chem. 94, 7238 (2022).
M. T. Rahman, S. Datto, and M. N. Sakib, OSA Contin. 4, 1808 (2021).
A. A. Rifat, M. R. Hasan, R. Ahmed, and H. Butt, J. Nanophot. 12, 012503 (2018).
A. A. Rifat, G. A. Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, Sensors 15, 11499 (2015).
A. A. Rifat, F. Haider, R. Ahmed, G. A. Mahdiraji, F. M. Adikan, and A. E. Miroshnichenko, Opt. lett. 43, 891 (2018).
A. I. Mahmood, R. K. Ibrahim, A. I. Mahmood, and Z. K. Ibrahim, J. Phys.: Conf. Ser. (IOP Publishing, 2018). p. 012118.
W. Sellmeier, Annal. der Phys. Chem. 219, 272 (1871).
G. Agrawal, Nonlinear Fiber Optics. 5th Ed. (UK, USA, Elesevier, Academic Press, 2001).
G. Wang, S. Li, G. An, X. Wang, Y. Zhao, W. Zhang, and H. Chen, Opt. Quant Elect. 48, 1 (2016).
A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. Shee, and F. M. Adikan, Opt. Expre. 24, 2485 (2016).