Investigate Indian Costus Plasma Parameters using Q-Switched Laser Nd: YAG

Main Article Content

Alyaa Hussein
https://orcid.org/0000-0001-6960-023X
Hadder M. Abdullah

Abstract

The Indian costus plasma properties are investigated, including electron temperature (Te), electron density (ne), plasma frequency (fp), Debye sphere length λD, and amount of Debye (ND), using laser-induced breakdown spectroscopy (LIBS). The study is done for different laser energies ranging from 300 to 600 mJ. The Boltzmann plot is used to calculate the temperature. The Indian costus is spectroscopically examined in the air with the laser 10 cm away from the target and the optical fiber 0.5 cm away. The X-ray fluorescence (XRF) analysis reveals that the Indian costus contains various minerals, each with a different percentage, which explains why the optical emission spectrum has so many peaks. Optical emission spectroscopy (OES) is used to analyze the plasma spectrum of the Indian costus in the air. The results show that as the laser energy grows, the amount of Debye will be greater, i.e (ND) >>>1, at a laser energy of 300 mJ, ND is 2.506775, as it increases to 600 mJ, ND becomes 3.006884, the electron temperature Te for 300 mJ is 1.86209223 eV as the energy increases, the Te becomes 2.205687353 eV.

Article Details

Section

Articles

Author Biographies

Alyaa Hussein, Department of Physics/College of Science for Women. University of Baghdad/Baghdad/ Iraq

 

 

 

Hadder M. Abdullah , Department of Physics/College of Science for Women. University of Baghdad/Baghdad/ Iraq

 

 

 

 

How to Cite

1.
Hussein A, Abdullah HM. Investigate Indian Costus Plasma Parameters using Q-Switched Laser Nd: YAG. IJP [Internet]. 2023 Mar. 1 [cited 2025 Jan. 18];21(1):58-67. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1083

References

A. Ali, K. Alqaseer, D. Fatlawi, S. Shehab, M. Falah, M. Hassan, W. Shnain, and O. Radhi, Kufa J. Nurs. Sci. 11, 1 (2021).

K. Zahara, S. Tabassum, S. Sabir, M. Arshad, R. Qureshi, M. S. Amjad, and S. K. Chaudhari, Asian Pacific J. Trop. Med. 7, S60 (2014).

R. C. Chinni, J. Chem. Educ. 89, 678 (2012).

D. W. Hahn and N. Omenetto, Appl. Spect. 66, 347 (2012).

G. H. Jihad and K. A. Aadim, Iraqi J. Phys. 16, 1 (2018).

D. A. Cremers and L. J. Radziemski, Handbook of laser-induced breakdown Spectroscopy (Tucson AZ, USA, John Wiley & Sons, 2013).

H. Yuan, A. B. Gojani, I. B. Gornushkin, and X. Wang, Spectrochim. Acta Part B: Atom. Spect. 150, 33 (2018).

K. A. Aadim, S. N. Mazhir, N. K. Abdalameer, and A. H. Ali, in IOP Conf. Series: Mater. Sci. Eng. (IOP Publishing, 2020). p. 012020.

F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (NewYork, Springer, 1984).

A. H. Ali, H. Al-Ahmed, S. N. Mazhir, and A. S. Noori, Baghdad Sci. J. 15, 87 (2018).

A. H. Ali, Z. H. Shakir, A. N. Mazher, and S. N. Mazhir, Baghdad Sci. J. 19, 0855 (2022).

N. F. Majeed, M. R. Naeemah, A. H. Ali, and S. N. Mazhir, Iraqi J. Sci. 62, 2565 (2021).

C. Suresh, Textbook of Plasma Physics (Tributors Pvt Ltd, India, CBS Publishers & Dis, 2010).

H.-H. Ley, J. Sc. Tech. 6, 49 (2014).

Similar Articles

You may also start an advanced similarity search for this article.