Effect of Magnetic Field on Plasma Engines

Main Article Content

Hayder Ali
Waleed Ibrahim Yaseen

Abstract

Ion engines, also known as plasma engines, are a pioneering space propulsion technology that is constantly being developed. In this work, a static magnetic field is used in a cylindrical engine that is placed inside a vacuum chamber under a pressure of 0.2 mbar and uses argon gas with an applied voltage of 5 kV and an engine power supply of 25-100 watts. The shape and intensity of the magnetic field determine the discharge performance of the ion thruster. A cylindrical ion engine was constructed with dimensions 5, 5.5, and 0.7 cm in length, width, and thickness, respectively. The coil of the ion engine generates a static magnetic field of 9 and 25 mT. This system was used to study the effect of the magnetic field on the ionization rate and plasma distribution. The results showed that the cylindrical magnetic field confined the energetic electrons primarily near the centre of the engine and resulted in an increased ionization rate in this region. The Langmuir probe is used to diagnose plasma parameters to calculate temperature and density with and without a magnetic field. The electron density in the centre of the ion engine increased in the presence of the magnetic field (2-6x1019) m-3, while the electron temperature decreased (2-4 eV). The use of a magnetic field contributes to reducing the energy consumption of the ion engine and reduces the energy expended to generate plasma inside the ion engine, making the use of the magnetic field in ion engines suitable for spacecraft.

Received: Jun. 12, 2025 Revised:   Oct. 13, 2025 Accepted:Nov. 07, 2025

Article Details

Section

Articles

How to Cite

1.
Ali H, Yaseen WI. Effect of Magnetic Field on Plasma Engines. IJP [Internet]. 2025 Dec. 1 [cited 2025 Dec. 1];23(4):87-9. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1496

References

1. A. K. Abd and Q. A. Abbas, Iraqi J. Sci. 64(6), 2867 (2023). https://doi.org/10.24996/ijs.2023.64.6.17.

2. W. I. Yaseen and D. A. Al-Shakarchi, Iraqi J. Sci. 65(6), 3484 (2024). https://doi.org/10.24996/ijs.2024.65.6.40.

3. H. A. Sadeq and W. I. Yaseen, Iraqi J. Sci. 63(5), 2297 (2022). https://doi.org/10.24996/ijs.2022.63.5.39.

4. M. V. Jacob, R. S. Rawat, B. Ouyang, K. Bazaka, D. S. Kumar, D. Taguchi, M. Iwamoto, R. Neupane, and O. K. Varghese, Nano letters 15(9), 5702 (2015). https://doi.org/10.1021/acs.nanolett.5b01363.

5. I. Levchenko, K. Bazaka, Y. Ding, Y. Raitses, S. Mazouffre, T. Henning, P. J. Klar, S. Shinohara, J. Schein, and L. Garrigues, Appl.Phy.Rev. 5 (1), 1 (2018). https://doi.org/10.1063/1.5007734.

6. O. Baranov, I. Levchenko, S. Xu, X. Wang, H. Zhou, and K. Bazaka, Reviews of Modern Plasma Physics 3(7) , 1 (2019). https://doi.org/10.1007/s41614-019-0023-3.

7. A. Kitaeva, H. Tang, B. Wang, and T. Andreussi, Vacuum 159, 324 (2019). https://doi.org/10.1016/j.vacuum.2018.10.046.

8. I. Levchenko, O. Baranov, D. Pedrini, C. Riccardi, H. E. Roman, S. Xu, D. Lev, and K. Bazaka, Appl. Sci. 12(21), 11143 (2022). https://doi.org/10.3390/app122111143.

9. I. G. Mikellides, R. R. Hofer, I. Katz, and D. M. Goebel, J. App. Phy. 116(5), 053302 (2014). http://doi.org/10.1063/1.4892160.

10. J. d. l. Cruz, Y. Wu, J. E. Candelo-Becerra, J. C. Vásquez, and J. M. Guerrero, CSEE Journal of Power and Energy Systems 10(2), 448 (2024). https://doi.org/10.17775/CSEEJPES.2022.07980.

11. E. Y. Choueiri, Journal of Propulsion and Power 20(2), 193 (2004). https://doi.org/10.2514/1.9245.

12. D. M. Goebel, I. Katz, and I. G. Mikellides, Fundamentals of electric propulsion. John Wiley & Sons, (2023).

13. J.-P. Boeuf, J. App. Phy. 121, 011101 (2017). http://doi.org/10.1063/1.4972269.

14. R. Eduard Vardges, In Selected Topics in Plasma Physics, Edited by S. Sukhmander Intech Open, Rijeka, (2020). https://doi.org/10.5772/intechopen.91222.

15. F. Magnus and J. Gudmundsson, Review of Scientific Instruments 79, 073503 (2008). https://doi.org/10.1063/1.2956970.

16. S. Bhattarai, World J. Appl.Phys. 2(2), 50 (2017). https://doi.org/10.11648/j.wjap.20170202.13.

17. T. A. Hameed and S. J. Kadhem, Iraqi J. Sci. 60(12), 2649 (2019). https://doi.org/10.24996/ijs.2019.60.12.14.

18. S. H. Abd Muslim, In Proceedings of the Mustansiriyah International Conference on Applied Physics (MICAP-2021) Acta Physica Polonica A, Baghdad, Iraq, 2021, p. 358.

19. J.-Q. Li, X.-Y. Xie, Q.-H. Zhang, S.-H. Li, and W.-Q. Lu, Physics of Fluids 34, 6 (2022). https://doi.org/10.1063/5.0097089.

20. L. Conde, In Dept. Física. ETSI Aeronáut ngenieros Aeronáuticos Universidad Politécnica de Madrid, Madrid, Spain, (2011), p. 28.

21. T. Abe and K.-i. Oyama, In An introduction to space instrumentation Terra Pu b., 1st (2013), p. 63, https://doi.org/10.5047/aisi.010.

22. S. Bhattarai and L. N. Mishra, International Journal of Research-GRANTHAALAYAH 5(4), 228 (2017). https://doi.org/10.5281/zenodo.571529.

23. A. A. Hussain, K. A. Aadim, and W. I. Yaseen, Iraqi J. Phys. 13(27), 76 (2015). https://doi.org/10.30723/ijp.v13i27.266.

24. B. M. Schulz, M.Sc., Western Michigan University, (2024).

25. M. Pandya, H. Kabariya, S. Karkari, and H. Patel, In Nirma University International Conference on Engineering (NUiCONE) IEEE, Ahmedabad, India, 2013, p. 6.

26. S. M. Fathi and S. J. Kadhim, Iraqi J. Sci. 63(1), 163 (2022). https://doi.org/10.24996/ijs.2022.63.1.17.

27. F. K. Hammoud and K. A. Aadim, Iraqi J. Sci. 63(4), 1540 (2022). https://doi.org/10.24996/ijs.2022.63.4.14.

28. M. F. Hassan and W. I. Yaseen, Iraqi J. Sci. 64(6), 3194 (2023). https://doi.org/10.24996/ijs.2023.64.6.45.

29. J. Chen, H. Geng, W. Meng, N. Yan, J. Hu, and X. Li, AIP Advances 14(8), (2024). https://doi.org/10.1063/5.0220087.

30. A. Shrestha, R. Shrestha, H. Baniya, R. Tyata, D. Subedi, and C. Wong, International Journal of Recent Research and Review VII, 2, 9 (2014). https://doi.org/10.13140/2.1.2159.1685.

31. H. Q. Farag and J. K. Saba, Iraqi J. of Phys. 20(4), 45 (2022). https://doi.org/10.30723/ijp.v20i4.1056.

32. A. A. Temur and A. F. Ahmed, Iraqi J. Sci. 63(7), 3225 (2022). https://doi.org/10.24996/ijs.2022.63.7.41.

33. K. Dobbyn, M.Sc., Dublin City University, (2000).

34. H. O. Hussein and Waleed Ibrahim Yaseen, Iraqi J. Sci. 65(5), 2925 (2024). https://doi.org/10.24996/ijs.2024.65.5.43.

35. Y. Izawa, K. Suzuki, K. Takahashi, and A. Ando, In Proceedings of the 12th Asia Pacific Physics Conference (APPC12) Japan, 2014.

36. R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, Journal of Propulsion and Power 22(4), 721 (2006). https://doi.org/10.2514/1.15952.

37. K. Xie, F. Tian, L. Fuwen, Q. Xia, and N. Wang, Plasma Sci. Technol. 22(9), 094011 (2020). https://doi.org/10.1088/2058-6272/ab9bf9.

38. L. Yang, P. Wang, and T. Wang, Front. Mater. 10, 1279039 (2023). https://doi.org/10.3389/fmats.2023.1150802.

39. M. Quitzau and H. Kersten, Eur. Phys. J.D, 66(2), 47 (2012). https://doi.org/10.1140/epjd/e2012-20216-5.

40. A. M. Ahadi, T. Trottenberg, S. Rehders, T. Strunskus, H. Kersten, and F. Faupel, Phys. Plasmas 22(8), 083513 (2015). https://doi.org/10.1063/1.4929788.

41. M. K. Jassim, Ibn AL-Haitham Journal For Pure and Applied Sciences 32(2), 9 (2019). https://doi.org/10.30526/32.2.2126.

Similar Articles

You may also start an advanced similarity search for this article.