Mathematical Modeling of Whispering Gallery Mode Resonators for High-Sensitivity Refractive Index Sensing

Main Article Content

Farah A. Lazem
Haider Y. Hammod
Aseel I. Mahmood

Abstract

In this study, the Single-Mode Fiber (SMF) was examined in a theoretical investigation of the impact of the medium on the two Whispering Gallery Mode Resonator (WGMR) models using MATLAB software. It was found that the Free Spectral Range (FSR) has an inverse relationship with the resonator radius, and it was equal to 0.33 THz. The low FSR value is caused by the big microsphere resonator. A high Q-factor is defined as 0.175 x 105. The resonance spectrum was found to diminish when the surrounding media's refractive index rose. The WGMR's evanescent field interacts with the external medium more strongly when the surrounding environment’s refractive index increases. The resonant modes' boundary conditions were altered by this interaction, which raises the modes' effective refractive index. The WGMR resonance frequency may also shift as a result of changes in the surrounding medium refractive index. To achieve high-resolution sensing, the surrounding medium of the spherically shaped WGMR was altered at a step of 0.002 in the range of 1.33 to 1.35. As for the sensitivity value, a value of (-) 100.152 THz/RIU was obtained, which is considered a good value for use as a sensor.

Received: Feb. 12, 2025 Revised:   Apr. 25, 2025 Accepted:May, 12, 2025  

Article Details

Section

Articles

How to Cite

1.
Lazem FA, Hammod HY, Mahmood AI. Mathematical Modeling of Whispering Gallery Mode Resonators for High-Sensitivity Refractive Index Sensing. IJP [Internet]. 2025 Dec. 1 [cited 2025 Dec. 1];23(4):76-8. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1437

References

1. N.M. Abas and A.A. Baqer, Baghdad Sci. J., 21, 1391, (2024). https://doi.org/10.21123/bsj.2023.8117.

2. A. Mahmood, V. Kavungal, S.S. Ahmed, G. Farrell, and Y. Semenova, Opt. Lett., 40(41), 4983, (2015). https://doi.org/10.1364/OL.40.004983.

3. J. Barnes, G. Gagliardi, and H. Loock, Optica., 1(2), 75, (2014). https://doi.org/10.1364/OPTICA.1.000075.

4. L. Cai, J. Pan, Y. Zhao, J. Wang, and S. J. p. s. s. Xiao, Physica Status Solidi (a), 217, 1900825, (2020). https://doi.org/10.1002/pssa.201900825.

5. M. Loyez, M. Adolphson, J. Liao, and L. Yang, ACS sensors, 8(7), 2440, (2023). https://doi.org/10.1021/acssensors.2c02876.

6. S. Yang, Y. Wang, and H. Sun, Adv. Opt. Mater., 3(9), 1136, (2015). https://doi.org/10.1002/adom.201500232.

7. VA. E. Shitikov, I. A. Bilenko, N. M. Kondratiev, V. E. Lobanov, A. Markosyan, and M. L. Gorodetsky, Optica, 5(12), 1525, (2018). https://doi.org/10.1364/OPTICA.5.001525.

8. G. Bernhard, and G. Seckmeyer, Atmos., 104(D12), 14321 (1999). https://doi.org/10.1029/1999JD900180.

9. P. Dragic, M. Cavillon, and J. Ballato, Appl. Phys. Rev., 5, 041301, (2018). https://doi.org/10.1063/1.5048410.

10. Q. Wu, Y. Qu, J. Liu, J. Yuan, S. Wan, T. Wu, X. He, B. Liu, D. Liu, Y. Ma, Y. Semenova, P. Wang, X. Xin, and G. Farrell, IEEE Sens. J., 21(11), 12734, (2020). https://doi.org/10.1109/JSEN.2020.3039912.

11. L. Coelho, J. De Almeida, J. Santos, R. Ferreira, P. André, and D. J. P. Viegas, Plasmonics, 10, 319 (2015). https://doi.org/10.1007/s11468-014-9811-3.

12. F. Azeem, M. R. Chaudhry, M. S. Anwar, H. A. Khan, L. Ma, and A. D. Khan, Journal of the Royal Society of New Zealand, 1, 25 (2024). https://doi.org/10.1080/03036758.2024.2395909.

13. Y. Guo, Y. Liang., Y. Li, B. Tian, X. Fan, Y. He, M. Liu, L. Peng, N. Tang, T. Tan, and B. Yao, Adv. Devices Instrum., 5, 41, (2024). https://doi.org/10.34133/adi.0041.

14. F. Vollmer and L. Yang, Nanophotonics, 1, 267, (2012). https://doi.org/10.1515/nanoph-2012-0021.

15. Z. Hou, L. Chen, R. Liu, C. Zhang, X. Wu, and X. Zhang, Photon. Res., 12, 1542, (2024). https://doi.org/10.1364/PRJ.491035.

16. G.A. Cavaco, R.A.M. Lameirinhas, C.P.C.V. Bernardo, J.P.N. Torres, and A. Baptista, Results Opt., 15, 100651 (2024). https://doi.org/10.1016/j.rio.2024.100651.

17. H. I. Mahdi, N. A. Bakr, and T. M. Al-Saadi, Iraqi J. Sci., 65(8) 4313, (2024). https://doi.org/10.24996/ijs.2024.65.8.16.

18. L. Jaiswal, A. C. Mishra, S. Yadav, P. Lohia, D. K. Dwivedi, R. K. Yadav, U. Kulshrestha, A. M. Tighezza, and M. K. Hossain, J. Comput. Electron., 24, 39 (2025). https://doi.org/10.1007/s10825-025-02277-7.

19. E. Gonzalez-Valencia, E. Reyes-Vera, I. Del Villar, and P. Torres, Opt. Laser Technol., 169, 110129 (2024). https://doi.org/10.1016/j.optlastec.2023.110129.

20. L. Labrador-Páez, K. Soler-Carracedo, M. Hernández-Rodríguez, I. R. Martín, T. Carmon, and L. L. Martin, Opt. Express, 25(2), 1165 (2017). https://doi.org/10.1364/OE.25.001165.

21. Y.-F. Chang, Y.-C.Wang, T.-Y. Huang, M.-C. Li, S.-Y. Chen, Y.-X. Lin, L.-C. Su, and K.-J. Lin, Analytica Chimica Acta, 1341, 343640 (2025). https://doi.org/10.1016/j.aca.2025.343640.

22. G. M. Jassam, S. S. Alâ, and M. F. Sultan, Iraqi J. Sci., 61(4), 765, (2020). https://doi.org/10.24996/ijs.2020.61.4.8.

23. L. K. Abbas, Baghdad Sci. J., 21(8), 2730, (2024). https://doi.org/10.21123/bsj.2024.10113.

24. Y. Zhang, Q. Song, D. Zhao, X. Tang, Y. Zhang, Z. Liu, and L. Yuan, Opt. Laser Technol., 159, 108955, (2023). https://doi.org/10.1016/j.optlastec.2022.108955.

25. W. Weng, J. Anstie, and A. Luiten, Phys. Rev. Appl., 3, 044015 (2015). https://doi.org/10.1103/PhysRevApplied.3.044015.

26. W. Yin, Z. Shen, S. Li, Y. Cui, F. Gao, H. Hao, and X. Chen, Opt. Express, 30(18), 32162 (2022). https://doi.org/10.1364/OE.469962.

27. M. Zhang, W. Yang, K. Tian, J. Yu, A. Li, S. Wang, E. Lewis, G. Farrell, L. Yuan, and P. Wang, Opt. Lett., 43(16), 3961 (2018). https://doi.org/10.1364/OL.43.003961.

28. E. A. Hassan, A. A. Al-mfrji, and A. I. Mahmood, J. Opt., 1, 1 (2024). https://doi.org/10.1007/s12596-024-01964-1.