Fabrication of Carbon Quantum Dots/Alq3 Layer for NO2 Gas Sensor

Main Article Content

Nooriyah Ahmed Abd
Omar Adnan Ibrahim
https://orcid.org/0000-0003-3709-5245

Abstract

The gas sensors were prepared using carbon quantum dots (CQDs) using an electrochemical method after mixing the CQDs with Tris (8-hydroxyquinoline) aluminum (III) (Alq3) polymer. A spin coating technique was used to deposit CQDs/Alq3 composite film on glass substrates with a ratio of 1:1. The CQDs/Alq3 gas sensor showed a sensitivity of about 24٪ at a temperature of 300 ℃, and this was calculated after measuring the change in the resistance of the samples with a response time of 2 and 8sec recovery time. The sensor showed a good response for nitrogen dioxide (NO2) gas. However, the sensitivity, response time, and recovery time for the CQDs gas sensor when exposed to NO2 gas at 300 °C were 78%, 4s, and 129s, respectively. The results showed that the best sensor CQDs/Alq3 led to a reduction in the recovery time, which shows the importance of the Alq3 polymer in improving the properties of the gas sensor.

Received: Oct.  29, 2023 Revised:  Jan.  30, 2024 Accepted: Feb. 16, 2024

Article Details

Section

Articles

How to Cite

1.
Abd NA, Ibrahim OA. Fabrication of Carbon Quantum Dots/Alq3 Layer for NO2 Gas Sensor. IJP [Internet]. 2024 Jun. 1 [cited 2025 Jan. 26];22(2):1-10. Available from: https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1214

References

- A. Hulanicki, S. Glab, F. Ingman, Pure Appl. Chem., 63(9), 1247–1250 (1991).

- Z. Yunusa, M. N. Hamidon, A. Kaiser, Z. Awang, sensors & Transducers, 168(4), 61-75 (2014).

- J. Janata, M. Josowicz, Nat. Mater., 2, 19–24 (2003).

- Y. Wang, J. T. W. Yeow, J. Sens., 2009, 1-24 (2009).

- S. M. Kanan, O. M. El-Kadri, Sensors, 9, 8158–8196 (2009).

- Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong, J. H. Liu, Sensors, 12, 2610–2631 (2012).

- S. Karthikeyan, H. M. Pandya, M. U. Sharma, K. Gopal, J. Environ. Nanotechnol. 4(4), 01-14 (2015).

- S. K. Pandey, K. H. Kim, Environ. Sci. & Technol., 43(9), 3020–3029 (2009).

- G. F. Fine, L. M. Cavanagh, A. Afonja, R. Binions, Sensors, 10, 5469-5502 (2010).

- Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, T. Kawabata, Appl. Phys. Lett., 90, 173119 (2007).

- A. Ponzoni, C. Baratto, N. Cattabiani, M. Falasconi, V. Galstyan, E. Nunez-Carmona, F. Rigoni, V. Sberveglieri, G. Zambotti, D. Zappa, Sensors, 17, 714 (2017).

- C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors, 10, 2088–2106 (2010).

- H. Yoon, Nanomaterials, 3, 524–549 (2013).

- J. Qu, Y. Chai, S. X. Yang, Sensors, 9, 895–908 (2009).

- T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, Y. Choi, IEEE Trans. Geosci. Remote Sens., 49, 572–580 (2011).

- L. Liu, X. Li, Z. Li, Y. Shi, Chemical Engineering Transactions, 68, 265-270 (2018).

- M. Alexandra, S. Clarice, T. P. Rafaella, M. G. Adriana, D. M. B. Humberto, C. de C. Bruno, L. B. José , Paulo, Chemical 282, 606-616 (2019).

- R. Lan, J. T. Irvine, S. Tao, Int. J. Hyd. Ener., 37, 1482 (2012).

- S. W. Lee, W. Lee, Y. Hong, G. Lee, and D. S. Yoon, Sens. Actuators B Chem. 255, 1788, (2018).

- N. Yamazoe, Sensors and Actuators B: Chemical, 108(1-2), 2-14 (2005).

- X. L. Kou, S. C. Jiang, S. J. Park, L. Y. Meng, Dalton Trans., 21, 6915–6938 (2020).

- S. Lu, G. Xiao, L. Sui, T. Feng, X. Yong, B. Yang, Angew. Chem. Int. Ed., 56, 6187–6191 (2017).

- S. Sun, Q. Guan, Y. Liu, B. Wei, Z. Yu, Chin. Chem. Lett, 30, 1051–1054 (2019).

- S. Wang, X. Bao, B. Gao, M. Li, Dalton Trans., 48, 8288–8296 (2019).

- A. H. Abd, O. A. Ibrahim, Chemical Methodologies, 6, 825-830 (2022).

- Xie, G, Appl. Phys. Lett., 92, 451-458 (2008).

- Y. Guo, S. Jangi, M. A. Weltr, Semicond. Sci. Technol. 20, 310–313 (2005).

- F. J. Mohammed, Instrumental chemical analysis, Baghdad University Press, 1984.

- D. Jung, M. Han, G. S. Lee, ACS appl. Mater. interfaces, 7(5), 3050-3057 (2015).

- K. M. Ibrahim, W. R. Saleh, A. M. A. Al-Sammarraie, Nano Hybrids and Composites, 35, 75-83 (2022).

- S. K. Abbas, A. N. Naje, Nano Hybrids and Composites, 30, 1-7 (2020).

- S. K. Abbas, A. N. Naje, Iraqi Journal of Physics, 18(47), 62-72 (2020).

- S. S. Al-Awadi, A. A, Ramadhan, F. T. Ibrahim, A. K. Abbood, Iraqi Journal of Science, 61(10) 2562-2569 (2020).

- R. A. Abbas, D. A. Abbass, Iraqi Journal of Science, 60, 84-90 (2019).

- A. A. Hameed, H. S. AL-Jumaili, Iraqi Journal of Science, 62(7), 2204-2212 (2021).

- S. M. Omran, E. T. Abdullah, O. A. Al-Zuhairi, Iraqi Journal of Science, 63(9), 3719-3726 (2022).

- S. S. Al-Awadi, A. A. Ramadhan, F. T. Ibrahim, A. K. Abbood, Iraqi Journal of Science, 61(10), 2562-2569 (2020).

- H. A. Abdulrahman, M. F. A. Alias, Iraqi Journal of Science, 62(11), 3858-3870 (2021).

- S. A. Khalaf, I. M. Ali, Iraqi Journal of Physics, 17(40), 21-32 21 (2019).

- G. A. Kadhim, M. H. Suhail, Indian Journal of Natural Sciences, 9(52), 2019.

- N. M. Al-Makram, W. R. Saleh, Iraqi Journal of Science, 62(8), 2543-2554 (2021).

- U. A. S. Al-Jarah, H. J. Mohamad, Y. M. Abdul-Hussein, Indonesian Journal of Electrical Engineering and Computer Science, 28(2), 686-692 (2022).

- S. K. Abbas, A. N. Naje, Journal of nano-and electronic physics, 11(5), 2019.

- H. H. Nayel, H. S. AL-Jumaili, Iraqi Journal of Science, 61(4), 772-779 (2020).

- S. A. Hamdan, Iraqi Journal of Physics, 19(50), 20-30 (2021).

- S. M. Abdul Kareem, M. H. Suhail, I. K. Adehmash, Iraqi Journal of Science, 62(7), 2176-2187 (2021).

- S. Y. Guo, P. X. Hou, F. Zhang, C. Liu, H. M. Cheng, Molecules, 27, 5381 (2022).

- W. K. Mahmood, A. N. Naje, M. M. Kadhim, Design Engineering, 8, 6485-6492 (2021).

- W. A. Al-Taa'y, B. A. Hasan, Iraqi Journal of Science, 62(11), 4385-4396 (2021).

Similar Articles

You may also start an advanced similarity search for this article.