Investigation of Numerical Simulation for Adaptive Optics System
Main Article Content
Abstract
In this study, the performance of the adaptive optics (AO) system was analyzed through a numerical computer simulation implemented in MATLAB. Making a phase screen involved turning computer-generated random numbers into two-dimensional arrays of phase values on a sample point grid with matching statistics. Von Karman turbulence was created depending on the power spectral density. Several simulated point spread functions (PSFs) and modulation transfer functions (MTFs) for different values of the Fried coherent diameter (ro) were used to show how rough the atmosphere was. To evaluate the effectiveness of the optical system (telescope), the Strehl ratio (S) was computed. The compensation procedure for an AO system was implemented. Analytical analysis was used to define the wave front and aberrations of the circular aperture telescope. Zernike polynomials were used to describe the residual error and figure out how much the compensation changed the measured turbulence values. The results of the computer simulation involving atmospheric turbulence reveal that elevating the ro values (4, 8, 12, 16, 20, 24, 28, 32) cm resulted in a 3.4% rise in S. However, when the adaptive optics system operated with a constant ro (20 cm), augmenting the Zernike aberration modes led to a remarkable 44% increase in S, signifying a substantial enhancement in the compensation procedure.
Article Details
Issue
Section
This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
P. D. V. Pereira, B. Holden, R. Morgan, J. Gubner, T. J. Murphy, C. Haughwout, G. Allan, Y. Xin, W. Kammerer, and K. Cahoy, in 34th Annual Small Satellite Conference, Utah State University, Logan, UT, 2020, p. 121.
J. Liu, V. A. Muruganandan, R. Clare, M. C. R. Trujillo, and S. J. Weddell, in 35th International Conference on Image and Vision Computing New Zealand, IEEE, 2020, p. 1.
A. Y. Shikhovtsev, P. G. Kovadlo, V. B. Khaikin, V. V. Nosov, V. P. Lukin, E. V. Nosov, A. V. Torgaev, A. V. Kiselev, and M. Y. Shikhovtsev, Remot. Sens. 14, 1833 (2022).
P. Hickson, J. Hellemeier, and R. Yang, Opt. Lett. 46, 1792 (2021).
A. Y. Shikhovtsev, L. Bolbasova, P. Kovadlo, and A. Kiselev, Mon. Nots. Roy. Astro. Soci. 493, 723 (2020).
R. N. Hassan, Neuro Quantol. 20, 574 (2022).
R. V. Sreekanth, R. K. Banyal, R. Sridharan, and A. Selvaraj, Res. Astron. Astrophys. 19, 074 (2019).
W. W. Arrasmith, Systems Engineering and Analysis of Electro-Optical and Infrared Systems. 1st Ed. (Boca Raton, CRC Press, 2018).
A. Popowicz and V. Orlov, Sensors 22, 7902 (2022).
U. E. Jallod, Iraqi J. Sci. 58, 583 (2017).
R. N. Hassan, H. S. Ali, and W. H. Wadee, Iraqi J. Sci. 62, 2463 (2021).
Y. Yan, S. Wu, L. Shi, W. Li, J. Si, and H. Niu, in Optical Metrology and Inspection for Industrial Applications IX, SPIE, 2022, p. 98.
A. Ziad, E. Aristidi, J. Chabé, Y. Fanteï-Caujolle, C. Renaud, and C. Giordano, in Adaptive Optics Systems VII, SPIE, 2020, p. 1502.
E. Masciadri, J. Vernin, and P. Bougeault, Astro. Astrophys. Supplem. Ser. 137, 185 (1999).
J. R. Beck, J. P. Bos, T. J. Brennan, and M. F. Spencer, Opt. Engin. 61, 044104 (2022).
M. Xu, S. Shao, Q. Liu, G. Sun, Y. Han, and N. Weng, Appl. Sci. 11, 8523 (2021).
X. Liu, Doctor of Philosophy Thesis, The University of Durham, (2021).
C. Schwab, Doctor of Natural Sciences Thesis, University of Heidelberg, (2010).
M. Carbillet, C. Verinaud, M. Guarracino, L. Fini, O. Lardiere, B. Le Roux, A. T. Puglisi, B. Femenia, A. Riccardi, and B. Anconelli, in Advancements in Adaptive Optics, SPIE, 2004, p. 637.
H. W. Shepherd, Doctor of Philosophy Thesis, Durham University, (2012).
R. N. Hassan, Doctor of Philosophy Thesis, University of Baghdad, (2012).
N. Ageorges and C. Dainty, Laser guide star adaptive optics for astronomy. Vol. 551. (Dordrecht; Boston, Springer Science & Business Media, 2013).
M. Bass, Handbook of Optics: Volume V–Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics. Vol. V. 3rd Ed. (USA, McGraw-Hill Education, 2010).
M. K. Mardan, Doctor of Philosophy Thesis, University of Baghdad, (2018).
W. H. Wadee, Doctor of Philosophy Thesis, University of Baghdad, (2016).
R. Bracewell, The Fourier Transform and Its Applications. 3rd Ed. (Boston, McGraw-Hill, 2000).
N. Schnitzer, S. H. Sung, and R. Hovden, Micro. Microanal. 26, 921 (2020).
M. K. Mirdan, R. N. Hassan, and B. Q. Al-Aboodi, Karbala Inter. J. Mod. Sci. 8, 306 (2022).
A. Quirrenbach, Adap. Opt. Vis. Sci. Astro. 31, 137 (2006).
Z. Wu, A. Iqbal, and F. B. Amara, Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems. (Berlin, Germany, Springer, 2012).
H.-X. Yan, S.-S. Li, D.-L. Zhang, and S. Chen, Appl. Opt. 39, 3023 (2000).
F. Ferreira, E. Gendron, G. Rousset, and D. Gratadour, Astro. Astrophys. 616, A102 (2018).
F. Y. Kanev, V. V. Lukin, and N. A. Makenova, in 5th International Workshop on Adaptive Optics for Industry and Medicine, SPIE, 2006, p. 139.
A. Gurvich and M. Belen’kii, J. Opt. Soci. Amer. A 12, 2517 (1995).
M. Chen, T. Gao, S. Hu, Q. Zeng, L. Liu, and G. Li, Resul. Phys. 7, 3596 (2017).
R. D. Haameid, B. Q. Al-Abudi, and R. N. Hassan, Iraqi J. Sci. 62, 5008 (2021).
A. Y. Shikhovtsev, P. G. Kovadlo, E. A. Kopylov, M. A. Ibrahimov, S. A. Ehgamberdiev, and Y. A. Tillayev, Atmosph. 12, 1614 (2021).
M. C. Britton, in Advancements in Adaptive Optics, Glasgow, United Kingdom SPIE, 2004, p. 609.
K. Ahn, S.-H. Lee, I.-K. Park, and H.-S. Yang, J. Korean Phys. Soci. 79, 918 (2021).
D. A. Paulson, Doctor of Philosophy Thesis, University of Maryland, College Park, (2020).
G. Agapito, A. Puglisi, and S. Esposito, in Adaptive Optics Systems V, Edinburgh, United Kingdom SPIE, 2016, p. 2164.
L. K. Abood, S. M. Al-Hilly, and R. N. Hassan, Iraqi J. Sci. 54, 222 (2013).
R. N. Hassan and H. S. Ali, Karbala Intern. J. Mod. Sci. 9, 3 (2023).
S. Gladysz, J. C. Christou, L. W. Bradford, and L. C. Roberts, Publ. Astron. Soci. Pacif. 120, 1132 (2008).
D. Schmidt, T. Rimmele, J. Marino, and F. Wöger, Adapt. Opt. Syst. V 9909, 316 (2016).
C. Li, Y. Lu, and S. Zhang, Opt. Engin. 60, 073107 (2021).
M. Hart and J. L. Codona, in Unconventional Imaging and Wavefront Sensing 2012, SPIE, 2012, p. 122.
J. M. Beckers, Ann. Rev. Astro. Astrophys. 31, 13 (1993).
F. Quirós-Pacheco, Doctor of Philosophy Thesis, Imperial College, (2006).
S. Ströbele, M. Kasper, and P.-Y. Madec, in Adaptive Optics Systems VII, Online Only SPIE, 2020, p. 270.