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Abstract: This paper presents a parametric audio compression scheme intended for scalable
audio coding applications, and is particularly well suited for operation at low rates, in the
vicinity of 5 to 32 Kbps. The model consists of two complementary components: Sines plus
Noise (SN). The principal component of the system is an overlap-add analysis-by-synthesis
sinusoidal model based on conjugate matching pursuits. Perceptual information about human
hearing is explicitly included into the model by psychoacoustically weighting the pursuit
meltric. Once analyzed, SN parameters are efficiently quantized and coded. Our informal
listening tests demonstrated that our coder gave competitive performance to the-state-of-the-
art Helix™ Producer Plus 9 from Real Networks®, and on the average our coder offered a
20 percent lower bitrate for the same audio quality. The audio coder gives a much wider
range of scalability than previous work of sinusoidal coders as well as existing commercial
audio coders. Moreover, the audio coder gracefully degrades in quality from hi-fidelity to a
reasonable quality at a very low bitrate, 5 Kbps. The most obvious application for the SN
coder is in scalable, high fidelity audio coding and signal modification.

Keywords: Parametric Audio Coding, Low-Rate Audio Coding, Sinusoidal modeling, Mathing
Pursuits.

1. Introduction outperforms at very low rates. The audio
Model based approaches to perceptual coder presented here segments the audio
audio compression have seen increasing signal into sines and noise (SN). First
interest in recent years. Sinusoidal sinusoids are modeled and removed,
modeling, in particular, has received leaving a noise-like residual for the noise
growing attention for audio coding and model as depicted in Figure 1. The
signal modification. A sinusoidal modeling organization of the paper is as follows.
compression system is now standard in the Parsing of the input signal into frames and
MPEG-4 specification for low-rate audio how these frames are combined back
compression [1, 2]. Sinusoidal modeling together to produce the reconstructed
techniques, however, are still far from signal is described in section 1. On each of
maturity, and many of the idea proposed in the frame, a perceptually motivated
the literature have not been fully matching pursuit is performed. Section 2
developed. There are a number of audio outlines the fundamental concepts of the
compression systems that use sinusoidal matching pursuits. The following sub-
modeling [3-8]. The specific audio coding sections examine how to make matching
scheme developed in this work, however, pursuits equivalent to an overlap-add
uses a different modeling and quantization analysis-by-synthesis sinusoidal model that
techniques. The coder also enables higher includes psychoacoustic phenomena. The
compression rates and a larger degree of final subsection shows that our formulation
scalabilty than previous work. In of matching pursuits enables the use of fast
comparisn to some popular audio coders, complex algorithms such as Fast Fourier
e.g., MP3 or Real Audio, our coder Transform  (FFT). Once  sinusoidal
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componets have been modeled and
removed, the modeling residual is captured
in an Equivalent Rectangular Bands (ERB)
noise structure. Section 4 gives a brief
description of the noise  model.
Quantization and coding of the model
parameters are covered thoroughly in
Section 5. Section 6 gives an elaborated
qualtiy assessment of our model against
state-of-the-art audio coders and previous
work of sinusoidal coders. The final
section of the paper gives the conclusion.

2. Overlap-Add Formulation:

In this work of sinusoidal modeling,
frames of the input signal x are represented
as a combination of sinusoidal signals. The
combination of sinusoids for each frame is
found via perceptually motivated matching
pursuits. These frames are combined in an
overlap-add fashion to reconstruct the

entire signal. Overlap-add signal modeling

is carried out as follows. Let x,[n]be the /-
th windowed frame of the signal,
namely x, [n]=w[n]x[n+ Ip}where w[n]is

an N-point window and p is stride length of
the window constrained so p<N. OLA

signal reconstruction of the windowed
segments is given by

fc[n] = };x, [n —Zp] = x[n]zl: w[n —Ip] (1)
so w[n]must overlap-add to a constant. If
the error of the matching pursuit on each of
the x[n] segments converges to zero,
perfect reconstruction is achieved.

3. The Matching Pursuits Algorithm:

Matching pursuits (MP) refers to an
iterative analysis-by-synthesis method for
computing signal decompositions in terms
of a linear combination of vectors chosen
from highly redundant dictionary [9, 10].
The M elements of the dictionary,
D={h,};m=0,....M -1, span the R" and
h,|=1for
all m. The algorithm is greedy in that at
each stage the vector in the dictionary that

best matches the signal is found, and
subtracted to form a residual. The

are restricted to have unit norm,

algorithm then continues on this residual.
More specifically, the task at the -th
iteration of the algorithm is to find the
function 4, and the coefficient o, which
minimize the norm of the
residualr,,, [n]=r[n]-ah, , where the
initial condition is r[n]=x[n]. The
solution is given by orthogonality [9]

I = I

&, =(h, o) @

h, =argmax Kh,rk >{,

2 2

Fen ”\ak

m

The optimal vector 4, is simply the one

with the largest correlation with the signal.
Therefore, the MP decomposition consists
of a set of correlation coefficients

}. The

signal reconstruction is the weighted linear
combination of the dictionary elements
found during decomposition, which is, if
the MP runs for X iterations,

{¢.,...} and vectors{h h

gore
my, 2

K
x[n] = Zakhm 3)
k=0

The energy in the residual converges to
zero as the number of iterations approaches
infinity [9]. ;

Each iteration in MP requires all of the
correlations  between the dictionary
functions and the current residual; these
can be derived efficiently using an update
formula [9]:

(hr)= ()=, (hh, ) (4)

The <h,hmk>terms can generally be

precomputed and stored.

3.1 Conjugate-Subspaces Matching Pursuit:

In basic MP, each iteration searches for a
single vector for the signal model. An
alternative is to consider subspaces, at each
iteration; the goal in subspace pursuit is to
find the matrix G which minimizes the
norm ofr,_, =r —~aG, where «is here a

coefficient vector and the columns of G are
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dictionary functions [10]. The formulation
of subspace pursuit is similar to the basic

MP  pursuit case; the orthogonality
constraint (1, ~Ga,G)=0leads to the
solution [10]

o, =(G"G) G™, (5)

where T denotes the conjugate transpose.
The energy of the residual is then given by

<rk N > - rkTG (GTG).l G'r, 6)
which minimized by choosing G so as to
maximize the second term. Clearly, this
approach is computationally expensive
unless G has some special structure. One
such structured case is the two-
dimensional case where the two columns
of G are a function 4 and its complex
conjugate#". The general results can be
greatly simplified for this case. Assume the
signal ris real and if 4 has nonzero real
and imaginary part, the correlation
coefficients appear in a conjugate pairs and
we only need to search half of the
correlation coefficient for the absolute
maximum. The optimal correlation

coefficients for a pair {h,h'} are given by
[10]

- ——-J-——[ (o )= (0 m )0y
a’ ‘-Kh,h'>]: <h,l‘k>'—<h,h'>'<h,rk>

7

The pursuit metric is given by ?

D= <h,rk > a, + (/7,;1_ >a; (8)

The algorithm simply searches for the

vector #, that minimizes the norm of the
residual

T [n] =7, [n] —ah, - a:/f

my

=7, [77] - 2Re{akhm‘} ®

The resulting MP signal decomposition has
the form

x[n]z2iRe{akhm [n]} (10)

It should be noted that the above
formulation is only valid when 4 and /i are
linearly independent.
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3.2 Sinusoidal Modeling Matching
Pursuit Dictionary:

It is still remains to define the dictionary to

use for the MP. Since the objective of the

MP is to find a set of windowed sinusoids

to accurately model each windowed signal

frame. We consider a dictionary that

consists of  windowed complex
exponentials
l;n[n]=\7{n]e’2”f9";n=0,l,. LN-1 m=0QL... M-,
(1

where w[n]is a normalized version of the

N-point analysis window. Since the input
signal is real, the conjugate subspace MP is
applicable and a frame-based MP
resembles a frame-based analysis-by-
synthesis sinusoidal model. At the k-th
iteration of the MP the residual signal is:

ea[n]=r[n]- ah, — a:h:,k
=7, [n]-2%[n]|a, |cos [27[%17 + 405,(}

(12)
The amplitude and the phase for each of
the cosine in Equation (*) are found from

the correlation coefficients{e,,a,,...} by
multiplying by #[n], and the frequency for
each is found from the indices
{mg,m,,...} by dividing by the dictionary
size, M.

3.3 DFT Interpretation:

Since each iteration of the MP requires M
correlation calculations, the computational
complexity is high for a general
unstructured dictionary. However, because
of the choice of the dictionary elements as
complex exponentials, the DFT (or the
FFT if the number of dictionary elements
is a power of 2) can be used for the
correlation  computations. The MP
algorithm must compute for
m=0,1,... .M -1,
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Where R, [m/M] denotes the M-point DFT of the k-th windowed
residual {#[n]r, [n]},and W, [m/M] is the M-point DFT of {»‘v[n]:} .

The solution is given by finding the
absolute maximum of the MP metric ®to
find the k-th index, my The solution can be
written as

h, =max{®}

"y
& msM

®=R U_ﬂ a [m]+ R, Bﬂak ] (%)

=2Re {Rk [%} o, [m]}

Then the k-th correlation is given by

) .
R| % |-w, %R | B
M M M

el :ake

L1 2m
-, [—Aj}’i}
(15)

Where o, and 6, are respectively the
magnitude and phase of  the model
component.

The correlation update in Equation (4)
is used as

() =(hn)=a (b, V=a (hh, ) (16)
The DFT interpretation of Equation (16) is

m m oo m=m | T,
B2 =r 2 | —gem —q ey 2
“’[AJ R‘LJ ‘ { M } o { M }

(7

which shows the correlations for the next
iteration k+1 are found by subtracting two
frequency shifted window transforms from
the DFT of the last stage residual.
Reconstruction of the frame is given by:

/64

n,

K-l

X, [n] = Zakhmk [n] + a,:h:k [n]

k=0 . . (18)
=2wlnl> a cos| 2r—%n+6
| ]Z ¢ L M ]

In our system, efficient reconstruction
using inverse FFT [11] is deployed.

3.4 Inclusion of Psychoacoustic Information:

Due to the very low bitrates targets of
typically 5 to 32 Kbps, only a limited
number of sinusoidal components can be
transmitted. Therefore a psychoacoustic
model must be employed to select those
sinusoids that are most significant for the
perceptual quality of the signal. To make
the MP algorithm includes psychoacoustic
information, we modify the pursuit metric
by a scalar sequence. In our formulation,
we will choose the sequence based on
psychoacoustic information. Let the metric
weighting sequence be

Y={Y[m]im=0,1,...M -1} and
Y[m]=0 for all m. The MP metric now has

the form
o ZRe{Rk E—;ﬂ ak[m]}
Y

= ] (19)

restrict

The denominator modifies each DFT
coefficients by Y[m], the m-th
weighting

psychoacoustic factor, and

causes an inverse amount of importance to
be placed on the metric coefficients.
Assuming the psychoacoustic model in
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[12] is somewhat accurate and choosing
Y as the masking threshold ofx,, the MP

will iteratively finds the perceptually most
significant spectral component in each
residual as compared to the masking ability
ofx,. Psychoacoustic information is also

exploited to stop the MP algorithm when
the residual signal falls below the
psychoacoustic masking threshold ofx,.
With this stopping criterion, although the
residual could be very large in a mean-
square sense, the reconstruction is
perceptually identical to the original.
Another stopping criterion utilized in rate-
scalable compression is to terminate the
pursuit after X iterations, which gives the
reconstruction with the K perceptually
most significant sinusoids.

4. Noise Modeling:

Once the sinusoidal energies have been
captured by the sines portion of the SN
model, the sinusoidal modeling residual is
captured in an equivalent rectangular
bandwidth (ERB) noise structure [13], as
shown in Figure 2. In comparison to other
standard noise residual representation
methods, we have found that this model to
offer the best tradeoff between complexity
and performance.

5. Quantization and Coding:

Once extracted, sinusoidal and noise
parameters are quantized and coded to
remove statistical redundancies as shown
in Figure 2. The first step in quantization
process is to quantize the sinusoidal
parameters to an approximated, just
noticeable difference (JND) scale [14]. By
quantizing these parameters to their
approximated JND scales, the values are
not identical to the original parameters; but
for most music they are perceptually
identical. This was verified in informal
listening tests between the original and
quantized parameters. Magnitudes
parameters are quantized to 4 bits on a
logarithmic  scale. This allows the
synthesized quantized parameters to sound
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identical to the synthesized original
parameters. Frequency parameters are
quantized to the just noticeable difference
frequency (JNDF) scale. Below 500 Hz the
JNDF scale is linear and each point is
separated little over 1 Hz. Above 500 Hz
the value increases in proportion to
frequency and is approximately 0.002f
[14]. By quantizing frequency parameters
to 10 bits on the JNDF scale, most listeners
will not be able to distinguish the original
frequencies from the quantized
frequencies. To further reduce the data-rate
of the magnitude and frequency
information, we have exploited the
technique of line tracking to take
advantage  inter-frame  dependencies.
Figure 3(b) shows the corresponding
magnitude track which also shows a high
degree of correlation between one peak to
the next within a track. To each track time-
differential coding is separately applied to
the frequency and amplitude parameters.
Absolute frequency and magnitude values
are only kept for the first peak of each
track. Let L denotes the maximum
allowable track length, each track is
described by the following information: an
absolute frequency value, between one and
(L-1) frequency differentials, an absolute
magnitude value, between one and (L-1)
differential magnitudes. To further reduce
the bit rate, Huffman coding is applied to
the differential frequencies and differential
magnitudes. The frequency and amplitude
codebooks for the Huffman codes are
derived from statistical information
obtained from the frequency differentials
and magnitude differentials respectively.
The above procedure substantially reduces
the bits required for magnitude and
frequency parameters. After quantization,
magnitude parameters required 4 bits per
magnitude. After tracking and Huffman
coding, magnitude parameters required on
average 2.6 bits per magnitude. This is
without any loss of information. Similarly,
after quantization, frequency components
required 10 bits per frequency. After
tracking and Huffman coding, they
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required on average 5.7 bits per frequency.
Phase parameters are uniformly quantized
on the unit circle using 6 bits. Because the
ear is relatively insensitive to phase, phase
information are not transmitted and instead
phaseless synthesis is deployed at the
decoder side. For noise, after extensive
informal listening tests, the noise
parameters are quantized over 12 ERB
energy values, the analysis windows are
1024 points long with 50% overlap and
each ERB energy value is scalar quantized
to 5 bits on a logarithmic scale. Once again
the encoder uses time-differential coding
t0 take advantage inter-frame
dependencies. The noise differentials
values are Huffman encoded. At 32 KHZ
sampling rate, the rate of noise parameters
due to quantization is 3.75 Kbps, while
after tracking and Huffman coding it
reduced to 2.2 Kbps on average.

6. Results and Discussion:

We have extensively tested our coder
against a wide variety of audio materials at
low bitrates in the range of 5 to 32 Kbps.
The coder can reasonably scales the output
bitrate and gracefully degrades in quality
from high-fidelity audio quality at 32 Kbps
to a reasonable audio quality at 5 Kbps.
The coder gives a much larger degree of
scalability than previous work and existing
commercial audio coders. In comparison to
the previous work of sinusoidal modeling
using matching pursuits [5, 6], we have
found that our coder can accurately define
the sinusoidal components that are most
significant to the perceptual quality of
audio. This was verified in informal
listening tests and is shown graphically in
Figure 4. Figure 4(a) shows the time-
frequency spectrogram of synthesized
sines extracted by using our MP algorithm.
Figure 4(b) shows the synthesized sines
resulting from the technique developed by
Yerma [5] where the MP solution is based

on maximizing the mstric@:Khﬁ,{W

which is not an accurate perceptual metric
for conjugate subspaces. As shown in

Figure 4(b), regions of low energy,
indicated by light gray, and particularly
those located above 4KHz are hardly
masked causing a serious hearable
artifacts. Our coder offered enhanced audio
quality against [5, 6] particularly at very
low bitrates ranging from 5 to 16 Kbps.
Considering the work of Levine [7],
unfortunately his parametric representation
of audio in terms of sines, transients, and
noise (STN) is not quite amenable to
scalable representation since all the STN
components should be transmitted together
to give the final synthesized audio. This
implies his system is not readily applicable
to audio compression when targeting very
low rates of 5 to 16 Kbps. In comparison to
his reported audio coding demos at 32
Kbps, it has been found that our coder
could give the same audio quality with 6 to
8 Kbps savings. With respect 10
commercial audio coders, a thorough
comparison has been conducted against
the-state-of-the-art Helix™ Producer Plus
9 from Real Networks®
(www.realnetworks.com). At very low
rates, 5 to 16 Kbps, it was found that our
coder outperformed and gave better audio
quality for most of the testing materials. At
higher bitrates, the coder gave very
competitive performance to the Helix
Producer. On the average, our coder
offered a 20 percent lower bitrate than
Helix given the same output quality. A
third comparison has been carried out with
the popular MP3 coder. At low rates in the
vicinity of 5, the MP3 coder failed to offer
a reasonable quality whereas our coder can
readily achieve AM-quality audio. At
higher rates it competed with MP3 coders
for almost all types of testing materials. It
should be noted that one limitation of
Helix Producer and MP3 coders is that
they are fixed bitrate coders and are highly
tweaked and optimized for its given
bitrates.  Through  the  course  of
experimental tests we set up our coder with
the following:
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Table 1. Settings of the system’s analysis parameters.

. . Noise
Ana;ys?g;t:::meters Sinusoidal Parameters Parameters
[=32 KHz 716 KHz
Analysis Time Window w[n] Hanning Window | Hanning Window | Bartlett Window
Analysis Window Length N 2048 1024 1024
Analysis Hop Size p 1024 512 512
FFT Size (Dictionary Size) M 8192 4096 256
Number of Peaks/Frame K 10-64 10-64 —
Number of ERBs/Frame — — 12

7. Conclusion:

We have developed a low-bitrate
compression system of audio based on sine
+ noise (SN) representation that enables
high fidelity and scalable representation of
audio as well as signal modifications. Our
coder gave robust coding of general wide-
band audio at rates between 5 and 32
Kbps; and  presented  competitive
performance  against some  popular
commercial audio coders and previous
work of sinusoidal coders.

Note: This work is supported by the
Natural Science Foundation of China
(No.69802007), Motorola China Research
Center (No.B38300), and Natural Science
Foundation of Guangdong (No.011611).
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Figure(1): Block diagram of the Parametric Audio Coder. (a) Encoder. (b) Decoder.
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Figure(2): The ERB-band noise model. Each band represents one ERB. Residual noise

energy is represented as a piecewise constant magnitude function with random phases. Model

is efficient in that only a single gain needs to be transmitted on each Bark band. The model
has been shown to provide the most perceptually seamlessly fusion with sinusoidal model
parameters.
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Figure(3): Tracking of sinusoidal parameters. (a) Forming of sinusoidal frequency tracks. (b)

An illustration of a magnitude track associated with the frequency track #k.
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(b)

58(b) Spectrogram of a time-domain and FFT-domain audio signal. (a) Spectrogram of
signal as analysed using our coder. (b) Spectrogram of signal analysed using the work of [3].
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