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Abstract
Lowpass spatial filters are adopted to match the noise statistics of the degradation seeking

good quality smoothed images. This study imply different size and shape of smoothing
windows. The study shows that using a window square frame shape gives good quality
smoothing and at the same time preserving a certain level of high frequency components in
comparsion with standard smoothing filters.

تنعيم الصورة باستخدام مرشح الترددات المكانية الواطئة المحور
سهاد عبد الكريم حمدان

:الخلاصة
Lowpass Spatial Filteringمـن طـرق تحـسين الـصور المـشوشة وهـييتـضمن هـذا البحـث اسـتخدام طريقـة

وتمـــت دراســـة تـــاثير شـــكل وحجـــم . حـــث عـــن صـــورة محـــسنة بجـــودة عاليـــةمــستخدمين نوافـــذ باشـــكال واحجـــام مختلفـــة للب
نتــائج أعطــتSquare Frameهــذه الدراســة بينــت ان النافــذة ذات الــشكل .النافــذة علــى تحــسن الــصورة المــشوشة 

.جيدة وحافظت على الترددات العالية في الصورة في نفس الوقت مقارنة بطرق التحسين القياسية

Introduction
Noise in an image generally has a

higher spatial frequency spectrum than
the normal image components. Image
noise arising from a noisy sensor or
channel transmission errors usually
appears as discrete isolated pixel
variations [pratt: 78].

Smoothing (by local weighted
averaging) is an effective image
regularization method that has been
used for denoising, restoration, and
enhancement. A drawback is that
smoothing can damage image features
such as edges, lines, and textures
[Ros:82,Carsten:2000]. To avoid the
damage, the smoothing has to be
adaptively controlled with two
principls: 1) control of the amount of
smoothing, i.e., less smoothing in the
locations with strong image features,
and more smoothing in the locations

with weak image features; and 2)
control of the direction of smoothing ,
i.e., minimal smoothing in the
directions across the image features ,
and maximal smoothing in the
directions along the image features
[Rene:98].

In general, image can be filtered
(enhanced) either in the frequency or in
the spatial domain.
A-Spatial domain filters

Those types of filters appled
directly on the pixels composing an
image. Different kinds of spatial filters
have been designed and implemented
e.g. lowpass filter , median, ……….,
etc.
B-Frequency domain filters

Refers to those types of filters
applied on the transformed coefficients
(frequencies) instead of the real pixels
values, taking into consideration that
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the transformed coefficients give an
indication to the variation in the value
of the pixels as a function of the pixel
coordinates, e.g. low-pass or high –
pass filters can be employed to smooth
the picture, or to enhance the sharp
edges. The design of these filters has
been well developed in digital signal
processing [Oppenheim 1975, Huang
1975].

Enhancement technique based on
various combination of methods from
these two categories [Gonzalaz:87,
Gonzalaz:92, Gonzalaz:2000].

In this paper we study smoothing
image in spatial domain using lowpass
spatial filtering.

Digital Convolution and Filtering
This section focused on a brief

discrbtion of the mathematical
convolution and filtering.

Digital convolution
Linear systems theory is a branch

of mathematics that provides the
mathematical basis for some digital
filters.  This  means  that  if  the  filter
satisfies certain conditions (i.e, it is
linear and shift-invariant), then the
output of such filters can be expressed
mathematically in terms of a
convolution equation [Awcock 1995].

For one-dimensional digital signal
the equation is,
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where )i(g is the ouput image at point
)i( and h  is the point spread function

or impulse response which identifies
the filter of the system. The (h) functin
is usually equal to zero outside some
range,  the above equation may be
rewritten as:
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where )w,w( +-  is the range over
which h is nonzero.

Thus  the  output  g(i)  at  point  (i)  is
given by a weighted sum of input
pixels surrounding (i) where the
weights are given by h(k). To create
the output at the next pixel (i+1) the
function h(k) is shifted by one, and the
weighted sum is recomputed. The full
output  is  created  by  a  series   of  shift-
multiply-sum operations, and this is
called a digital covoluation.

In two-dimensions, h(k) becomes
h(k, l) and eq.(2) becomes a double
summation:
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Here  again  ,  g(i,  j)  is  created  by  a
series of shift – multiply – sum
operations.  The  values  of  h  are  also
referred to as the filter weights, the
filter kernel, or the filter mask
(window) which is moved over the
complete digital image f(i, j) . For
reasons of symmetry, h(i, j) is almost
always chosen to be of size m×n where
both m and n are odd. Often m=n.
There is a reflection between the filter
weights and the point spread function
of  a  filter  (h),  if   h(k,  l)  is  the  point
spread function, then the weights or
filter mask is usually given as h(-k, -l).

In physical systems, the kernel h
must be always non-negative, which
results in some blurring or averaging of
the image. The basic idea of
convolution, the weights of (h) may be
varied over the image, and the size and
shape of the window varied. These
operations are no longer linear, and are
no longer convolutions,  but  become
general “moving window Operations”
which are very common in digital
image processing. With this flexibility,
a wide range of linear, nonlinear, and
adaptive filters may be implemented
such as for edge enhancement or
selective smoothing. [Niblack1986].
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Spatial Filtering
The use of spatial masks for image

processing usually is called spatial
filtering , and the masks themselves are
called spatial filters [Gonzalaz:92].
Spatial filtering is performed by
convolving the image with a mask or a
kernel [pratt:78].

The image smoothing filtering
categories:

A- Linear Filters
The type of linear filter used, the

basic approach is to sum products
between the mask coefficients and the
intensities of the pixels under the mask
at a specific location in the image.
Fig.(1)  shows  a  general  3×3 mask.
Denoting the gray levels of pixels
under the mask at any location by

9p,,.........3p,2p,1p ,  the  response  of  a
linear mask is [Gonzalaz:92,
Gonzalaz:2000].

)4.....(9p9w....2p2w1p1wR ++=
It is called linear filters because the

filter’s output values are related with
all the value of adjacent pixels
(covered by the filter area) by a linear
relationship e.g. lowpass filter
[Pratt:75, Justusso:78].

P1 P2 P3

P4 P5 P6

P7 P8 P9
Fig. (1): a 3×3 Mask with arbitrary

coefficients (weights)

B- Nonlinear Filter
It refers to all other kinds of filters

doesn’t obey a linear relationship
between the filter’s output values and
the adjacent pixels values.[pratt:1975,
Nonlinear spatial filters operate on
neighborhoods. Their operation is
based  on  directly  on  the  values  of  the
pixels in the neighborhood under
consideration e.g. the median filter in

which a pixel value is replaced by the
median  of  a  set  of  it’s  neighbors
[Gonzalaz:92, Gonzalaz:2000].

Numerical implementations and
Results

The shape of the impluse respose
needed to implement a lowpass
(smoothing) spatial filter indicates that
the  filter  has  to  have  all  positive
coefficients (see Fig. (2))

Fig. (2): Cross section of corresponding
spatial domain filters

Although the spatial filter shape
shown in Fig. (2) could be modeled by,
say, a sampled Gaussian function, the
key  requirement  is  that  all  the
coefficients be positive. For a 3×3
spatial filter, the simplest arrangement
would be a mask in which all
coefficients have a value 1. From
eq.(4), the response would then be the
sum of gray levels for nine pixels,
which could cause R to be out of the
valid gray-level range. The solution is
to scale the sum by dividing R by 9.
Fig. (3a) shows the resulting mask.
Larger mask follow the same concept,
as Fig. (3b). Note that, in all these
cases,  the  response  R would  simply  be
the average of all the pixels in the area
of the mask. For this reason, the use of
masks of the form shown in Fig. (3) is
often referred to as neighborhood
averaging [Gonzalaz:92, Gonzalaz:
2000]. If the required noise mask
becomes large in order to achieve
adequate noise cleaning, it is usually
more computationally efficient to
perform the convolution operation
[pratt:78].

0
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Fig. (3) spatial lowpass Filter of various sizes

We have studied the effects of the
shape and size of the used window,
many  filters  can be used, we take the
weight and multiply it by  mask; then
sum the corresponding values. Often a
3×3 a  square  kernel  is  used   as  shown
in Fig. (4), although larger kernels (e.g.
5×5 squares) can be used for more
severe smoothing as shown in Fig. (5).
Various standard kernels exist for
specific applications, where the size
and the form of the kernel determine
the characteristics of the operation. The
idea of average filtering is simply to
replace each pixel value in an image
with the average value of it’s
neighbors, including itself. This has the
effect of eliminating pixel value which
are unrepresentative of their
surroundings. Average filtering is
usually though of as a convolution
filter. Like other convolutions it is
based around a kernel, which
represents the shape and size of the
neighborhood to be sampled when
calculating the average. The weighted
average  on  a  pixel  Neighborhood,  in
the averaging of equation (4) the pixels
were  all  weighted  the  same  by  the
value 9/1Wk =  and  all  9  of  these
weights added up to unity. The sum of
all mask entries multiplied by the mask
factor should equal unity to keep the
output average brightness the same as
in the original image. Here the weights
1/9  are  all  equal  and  we  say  that  the

average has equal weighting. Consider
the following weighting

å =
=

9,1k kkk )5.....(..........PWP

It  is  convenient  to  put  the  weights
in  an  array  called  a  mask  of  the  same
size as the neighborhood, and to define
an operation for the weighted average.
Consider the operation of a mask and
neighborhood shown below:
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we call this operation convolution
(as explaned in previous section). An
example of weighted averaging
convolution mask and its mask factor
(1/5) that  forces the weights to sum to
unity, the 3×3 plus mask operations on
a 3×3 neighborhood is:
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987
654
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In  same  approch  we  get  masks  in
3×3 size and Horizontal line shape,
Vertical line shape,Square frame
shape, Digonal shape, and plus with
zero center shape  as shown in Fig. (4)

1 1 1

1 1 1

1 1 1

l/9×

(a)

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1/25×

(b)
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as well as we obtained masks in 5×5
size as shown in figure (5).
 In general, the weighted averaging
filter. It can be expressed as follows
[Roesnfeld:1969, Prewitt:1970, Davis:
1975, and Rosenfeld:1976]:
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)y,x(h*)y,x(f)y,x(g

where f & g are the input and output
functions respectively, and the
weighting factors of the filter h are

equal to :
)1n2)(1m2(

1
++

This study represent the theartical
results of  lowpass spatial filtering
using many window  with different
size and shapes. For testing, the
performance the filters, the original
medical image of size (256*256) pixel
and  it’s  histogram  are  shown  in  Fig.
(6a). This image is corrupted by a
Gaussian noise. The degraded image

and it’s histogram are show in Fig.
(6b).

Fig.s (7,8,9,10) show the smoothed
images, their histogram , and the type
of smoothing filters that using in the
process.

After implementing all of the
previous filters on test image, we
compare the performance of the filters
using statistical analysis such as
standard deviation (Stdv.), minimum,
maximum, and mean as shown in table
(1).  In  additions  to  that  PSNR  (Peak
Signal to Noise Ratio) and MSE (Mean
Square Error) are culculated to check
the quality of smoothed images as
shown in table (2) this table demonstrat
the superiority of our presented filter.

Conclusions
Depending on the previous results,

we can conclude that using a  square
frame window gave  better quality
smoothed images this is   because this
filter preserve the histogram  and not
creating artifacts in the smoothed
image.
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a- Horizontal Line Shape                        b-Vertical Line Shape

c- A square frame shape                                    d-Pluse shape

      e-Diagonal shape                                f-plus shape with zero center

1  0  0

0  1  0

0  0  1

×1/3

Fig. (4) Representation modified filters with different shapes and with 3× 3 size window

0  1  0

1  0  1

0  1  0

×1/4

0  0  0

1  1  1

0  0  0

×1/3

0 1 0

0 1 0

0 1 0

×1/3

1  1  1

1  0  1

1  1  1

×1/8
0  1  0

1  1  1

0  1  0

×1/5
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                  a- Horizontal Line Shape                                      b- Vertical Line Shape

                   c- A square frame shape                                                     d- pluse shaped

                            e- Diagonal  shape                                                        f- circular shape

       g- circular with zero center

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

0 0 0 0 0

0 0 0 0 0

1/5×

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1/5×

1 1 1 1 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 1 1 1 1

1/16×

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

1/5×

0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 0 1 0 0

0 0 1 0 0

1/9×

0 1 1 1 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 1 1 1 0

1/21×

Fig. (5) Representation modified filters with different shape and with 5×5 window size

0 1 1 1 0

1 1 0 1 1

1 0 0 0 1

1 1 0 1 1

0 1 1 1 0

1/16×
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Fig. (6)
a. Original image             b. noisy Image

a

b
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Fig. (7): Represent the smoothing of  images using different classic and modification
Block and its Histogram

0 0 0
1/ 3 1/3 1/3
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00 1/ 5 0
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Fig. (8): Represent the smoothing of images using different classic and modification
Block and it’s Histogram

1/8 1/8 1/8
1/8 0 1/8
1/8 1/8 1/8
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0 1/4 0

a

b

c
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0 0 1/9 0 0
0 0 1/9 0 0

1/9 1/9 1/9 1/9 1/9
0 0 1/9 0 0
0 0 1/9 0 0

1/25 1/25 1/25 1/25 1/25
1/25 1/25 1/25 1/25 1/25
1/25 1/25 1/25 1/25 1/25
1/25 1/25 1/25 1/25 1/25
1/25 1/25 1/25 1/25 1/25

0 0 0 0 0
0 0 0 0 0

1/5 1/5 1/5 1/5 1/5
0 0 0 0 0
0 0 0 0 0

Fig. (9): Represent the smoothing of images using different classic and modification Block and its Histogram
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1/16 1/16 1/16 1/16 1/16
1/16 0 0 0 1/16
1/16 0 0 0 1/16
1/16 0 0 0 1/16
1/16 1/16 1/16 1/16 1/16

1/5 0 0 0 0
0 1/5 0 0 0
0 0 1/5 0 0
0 0 0 1/5 0
0 0 0 0 1/5

0 0 1/5 0 0
0 0 1/5 0 0
0 0 1/5 0 0
0 0 1/5 0 0
0 0 1/5 0 0

0 1/16 1/16 1/16 0
1/16 1/16 0 1/16 1/16
1/16 0 0 0 1/16
1/16 1/16 0 1/16 1/16

0 1/16 1/16 1/16 0

Fig. (10): Represent the smoothing of images using different classic and modification Block and its
histogram
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Table (1): The statistical properties for different modification filters and classical filter

Shape ofwindow SizeOf
window

min Max mean Stdv.

 Original image 0 254 79.595 54.359
 Noisy image 0 255 84.5974 595.45
1 Square 3 0 255 101.8004 70.952
2 Pluse 3 0 255 101.8195 70.995
3 Horizontal 3 0 255 103.1477 70.7105
4 Vertical 3 0 255 84.6007 54.2808
5 diagonal 3 0 252 84.6012 52.9219
6 Square frame 3 0 255 102.179400 69.9918
7 Plus shap with zero center 3 0 255 106.155 75.067
8 Square 5 0 255 102.451 69.812
9 Pluse 5 0 255 102.259 70.283

10 Horizontal 5 0 255 103.1779 70.2699
11 Circular 5 0 255 101.452 70.3143
12 Vertical 5 0 255 84.3856 52.2118
13 Square frame 5 0 255 103.1976 69.31002
14 diagonal 5 0 242 84.5376 49.8358
15 Circular with zero center 5 5 252 103.857 62.243

Table (2): The  PSNR and MSE for different modification filters and classical filters

Shape of window Size
Of window

PSNR MSE

 Noisy image 9.3941731 7475.8924
1 Horizontal 3 9.70834 6954.1868
2 Vertical 3 9.461009 7361.72
3 Square frame 3 10.12947 6311.5098
4 Square 3 9.85723 6719.815
5 Pluse 3 9.77938 6841.3526
6 diagonal 3 10.0355 6449.4505
7 Plus shap with zero center 3 9.591725 7143.446

8 Horizontal 5 9.84423 6739.9494
9 Vertical 5 9.596219 7136.0585
10 Square frame 5 10.3237923 6035.3314
11 Square 5 10.057624 6416.791
12 Pluse 5 9.90821 6641.3946
13 diagonal 5 10.2223 6177.9286
14 Circular 5 10.02219 6469.3490
15 Circular with zero center 5 10.08684 6373.7691
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