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Abstract:

A new blind restoration algorithm is presented and shows high quality restoration. This
is done by enforcing Wiener filtering approach in the Fourier domains of the image and the

psf environments.
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Introduction

The field of image restoration
studies methods that can be used to
recover an original signal from
degraded observations. Many image
restoration algorithms have their roots
in well-developed areas of mathem-
atics such as estimation theory, linear
algebra and numerical analysis. Since
most imaging problems are ill-
conditioned, a direct deconvolution can
be performed only from the ideal case
of complete and noise free data.

The Wiener filter and the
constrained least square filters are
linear techniques for deconvolving
blurred and noisy data. The results are
derived in terms of the power spectra
of the blurred image (noise free) and
the noise image.

In classical image restoration, we
need to know the blurring function and
the degradation phenomenon. Since
neither of these two is known exactly,
then any technique that is used to
restore astronomical images is of
limited capability. For better quality
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deconvolved images, one need to use
alternative deblurring algorithms. The
maximum entropy techniques (ME) are

being increasingly used for the
deblurring of images from blurred,
noisy and incomplete data. ME

techniques have found applications in
optical deconvolution, radio
astronomy, geophysics, x-ray imaging,
and gamma ray imaging.

Hunt introduced the application of
a maximum a Posteriori algorithm
(MAP) based on Bayesian statistics to
deconvolve blurred and noisy data by
modeling the noise as a Gaussian
additive film grain noise.

Deconvolution is sometimes used
to refer to the entire field of image
restoration. It is, however, more
common to refer to deconvolution as
techniques that invert the blurring
process in a deterministic way. Often
these techniques ignore the effects of
noise on the inverse procedure. In
applications where the knowledge
about the degradations is very limited,
blind deconvolution techniques can be
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applied to produce both an estimate of
the object as well as an estimate of the
(translation- invariant) degradation.

Most image restoration methods
require a priori knowledge about the
point spread functions. Blind image
restoration algorithms, however, do not
require knowledge about the point
spread function. Instead they aim to
restore the original image from the
degrade image and estimate the point
spread function.

Blind iterative  deconvolution
techniques (BID) combine iterative
constrained with blind deconvolution.
Essentially, it consists of using very
limited information about the image,
like positivity and image size, to
iteratively arrive at a deconvolved
image of the object, starting from a
blind guess of either the object or both
the convolving function.

The iterative loop is repeated

enforcing image-domain and Fourier
domain constraints until two images
are found that produce the input image
when convolved together.
Christou, et. al., (1995) X presented
an application of an iterative
deconvolution algorithm to speckle
interferometric  data. This  blind
deconvolution algorithm permits the
recovery of the target distribution
when the point spread function is either
unknown or poorly known.

Schulz, et. al., (1997) ™, studied
the process of the blind deconvolution
when the precise form of the blurs is
unknown in order to improve the
resolving power of the ground based
optical telescopes.

A method for performing blind
deconvolutions on degraded images
and data has been developed by Caron,
et. al., (2001) ! The technique uses a
power law relation applied to the
Fourier transform of the degraded data
to extract a filter function. This filter
function closely resembles the point
spread function of the system and can
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be used to restore and enhance higher
frequency contents. The process is
noniterative and requires only that the
point spread function be space
invariant and the transfer function be
real.

Image Restoration

Image restoration methods are used
to improve the appearance of an image
by application of a restoration process
that uses a mathematical model for
image degradation. Examples of the
types of degradation include blurring
caused by motion or atmospheric

disturbance,  geometric  distortion
caused by imperfect lenses,
superimposed interference patterns

caused by mechanical systems, and
noise from electronic sources. It is
assumed that the degradation model is
known or can be estimated. The idea is
to model the degradation process and
then apply the inverse process to
restore the original image. In general,
image restoration is more of an art than
a science; the restoration process relies
on the experience of the individual to
model degradation process
successfully 1.

Blurring of the image by the point
spread function quantitatively
decreasing the accuracy of the
measurements performed. The goal of
image restoration is to invert the
degradations that impose on the image.
This requires an accurate model of the
image formation.

By imposing two types of
distortions on the image, a
deterministic blurring by the point
spread function and a stochastic
distortion by noise, we can therefore
formulate the goal of image restoration
as the reconstruction of the original
sample from that of the distorted
image®.
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Fig.(1): Diagram of a general image
restoration procedure

The degradation process model
consists of two parts, the degradation
function and the noise function. The
general model in the spatial domain
follows:

g(x.y) =psf(x,y) ®f(x,y) +n(x,y) (1)
where n(x,y) IS an additive noise
function.

Because convolution in the spatial
domain is equivalent to multiplication
in the frequency domain, the frequency
domain model of Eq. (1) is given by:

G(u,v) =T(u,v)F(u,Vv)+ N(u,v) (2)
where,

G(u,v)=Fourier transform of the
degraded image, g(X,Yy).

T(u,v) =Fourier transform of the
blurring function, psf(x,y).

F(u,v) =Fourier transform of the
original image, f(x,y).

N(u,v) =Fourier transform of the

additive noise function, n(x,y).

The inverse filter uses the foregoing
model, with the added assumption of
no noise (N(u,v) =0). If this is the case,
the Fourier transform of the degraded
image is:

G(u,v)=T(u,v)F(u,v) 3)
So, the Fourier transform of the
original image can be found as:
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G(u,v) 1

= = 4
Fuv) == G(U’V)T(u,v) (4)

To find the original image, we take
the inverse Fourier transform of HU\):
- _ 4| G(u,v)
f(x,y)=FFu,v)]=F =" (5

(x.y) = F[F(.v) {T(U’V)} ©)
where f(x,y) is the restored image and
F?[ ] represents the inverse Fourier

transform operator.

The Wiener filter, also called a
minimum mean square estimator,
alleviates some of the difficulties

inherent in inverse filtering by
attempting to model the error; the
average absolute error Is

mathematically minimized, as shown
below:

‘f(x,y) —f(x,y)‘ = min
The Wiener filter is given by:
T*(u,v)

Ry (u,v) =

\T(u,v)\2 +{S”(U’V)}
S;(u,v)

(6)

whereT*(u,v) = complex conjugate of
T(u,v)

S, (U,v) =|N(u,v)[*= power spectrum
of the noise

S, (u,v) = [F(u,v)| =power spectrum of
the original image

If we assume that the power noise term
S, (u, V) is zero, this equation reduces
to an inverse filter since
T(u)* =T (u,v)T(u,v). The Wiener
filter is applied by multiplying Eq. (6)
with the Fourier transform of the
degraded image, and the restored

image is obtained by taking the inverse
Fourier transform of the result,

F[Ry(u,v)G(u,v)]
©)

f(x, y) = F‘lllA:(u,v)Jz
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As the noise term increases, the
denominator of the Wiener filter
increases, leading to decrease the value
of Ry, (u,v).

If the psf is known in advance,
many restoration algorithms, such as a
Wiener filter and a generalized inverse
filter, are proposed and the restoration
method is almost established.

On the other hand, several
restoration algorithms without using
information about the psf are also
proposed. This kind of the algorithm
restores an original image by
simultaneously estimating an image
and a psf, and it is called a blind
deconvolution.  These  algorithms
iteratively estimate both an image and
a psf by using a priori constraints such
as the non-negative property of an
image and a psf, the finiteness of the
support area of the object in an image,
or the symmetric shape of a psf .

Blind deconvolution was
developed mainly for restoration of
images in astronomy. This is because
the image of an astronomical body (a
star) should be a point in principle and
this information is very useful as a
priori constraint of the estimation [,

In many instances, the degraded
observation, g(x,y) , can be modeled as

the two-dimensional convolution of the

true image, f(x,y), and the point
spread function of a linear shift-
invariant  system ®L  In  some

applications, the point spread function
psf(x,y) is known explicitly priori to
the restoration process, and the
recovery of f(x,y) is known as the
classical linear 1image restoration
problem. However, there are numerous
situations in which the point spread
function is not explicitly known, and
the true 1image,f(x,y), must be
identified directly from the observed
image, g(x,y), using partial or no
information about the true image and
the point spread function.
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Blind deconvolutions restore the
higher spatial frequency components of
the degraded data with little or no a
priori knowledge of the degradation.
Blind deconvolution techniques can be
either iterative or noniterative. Iterative
techniques  generally  require a
significant amount of computation, and
their implementation can be difficult.
The noniterative, does not require
information about the degradation, is
implemented comparatively easily, and
can be applied to many types of data.
This algorithm does require the
degradation to be approximately space
invariant.

Simulations

The convolution g(x) of two
functions, f(x) and psf(x), can be
expressed mathematically by the
integral equation,

9(x) = [ (x,)psf (x = x,)dx;  (8)

The iterative blind deconvolution
algorithm (Fig.(2)) is demonstrated
by™ as follows:

Starting with complete, although
possibly noisy, knowledge of the
convolution function g(x), the present
technique uses some general priori
information concerning the function
f(x) and psf(x) (for example, the
functions may be known to be
nonnegative everywhere) and attempts
to deconvolve the two functions. The
basic deconvolution method consists of
the following steps. First, a
nonnegative valued initial estimate
f,(x) is input into the iterative scheme.

This function is Fourier transformed to
yield F (u), which is then inverted to

form an inverse filter and multiplied by
G(u) to form a first estimate of the

second function’s spectrum T (u) .

This estimated Fourier spectrum is
inverse transformed to give psf, (x).

The image domain constraint of non-
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negativity is now imposed by putting
to zero all points of the function

ps'fy0 (x) is consequently formed that is

Fourier transformed to give the
spectrum T, (u). This is inverted to
form another inverse filter and

multiplied by G(u) to give the next
spectrum estimate F(U).

A single iterative loop is completed
by inverse Fourier transforming F (u)
to give f,(X)and by constraining this
function to be non-negative, yielding
the next function estimate E(x). This

algorithm is of a limited capabilities
because it is used a new estimate of the
optical transfer function, T(u,v) and
using inverse filtering.

Now our approach is to enforce

Wiener  filters and three constraint
conditions in both image and psf
domains as shown below see Fig. (3).
E Form new estimate -;
of F from G and l
.I’:‘
A 4
Inverse 6
Fourier 7 5 Fourier
transform wransform
A
pbf
f
Impose image 4 Impose image
plane constraint plane constraint
A
f f psf
—>
Fourier 1 3 Inverse Fourier
transform transform
2
- Formjewestimate of T
\ 4 E F from G and T I

Fig. (2): General blind deconvolution algorithm
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Fig. (3): Flow-chart of the new adaptive blind
deconvolution algorithm.
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In the image domain:
1. Residual error =
1 - -
Wz‘gn ®psf, —g,|=minimum (9)

2. Positivity (intensity is

positive).

always

1 -
3. Wz‘gn_gn—l‘;mln Imum  (10)

In the psf domain:

1. Eq. (9) isalso used in this domain.
2. Positivity (intensity is always
positive).

3. I\llzszf” —psf,_,|= minimum (11)

The flow-chart of this adaptive
algorithm is demonstrated in Fig. (3).
To implement this algorithm, the
following computer simulations are
carried out
1- The image of the Saturn as shown in
Fig. (4a) is taken to be the original
object, f(x, y).

Output
psf

s 2.
inimum

min imum
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2- This image is then convolved with
Gaussian blurring function of HWHM
= 2.35. The result is a blurred image
of the Saturn, i.e f(x,y)®psf(x,y). This
result is then normalized to one at
maximum.

3- A normalized random noise, n(x,y),
is then added to step 2 following the
equation below:

a(x,y) =f(x,y) ®psf(x,y) +Q n(x,y)

where Q is a parameter takes values
between 0 and 1.

In this simulation, Q is taken to be 0.3.
The result is a degraded image of
Saturn, g(x,y) with (SNR= 30.24) as
shown in Fig.(4b). It should be pointed

out here that SNR=o,/c,,where
o, &c, are the standard deviations of

the signal and the noise respectively.
This image is taken to be as an input
image Qgo(X,y). The initial estimate of
the psf is taken to be a Gaussian psf
with  HWHM = 3.5. The above
algorithm Fig.(3) is then executed by
enforcing inverse and Wiener filter
respectively. The final estimate of the
actual psf and blind restored image
using inverse filter are shown in Fig.
(4c &d). The results of Wiener filter
are shown in Fig.(4e & f). The central
lines of Fig. (4a,b,d,e) along the x-axis
and y-axis are shown in Fig. (5) and
Fig. (6) respectively. The restored lines
in Fig. (5d & 6d)in the case of Wiener
filter are much smoother and sharper
than that of the inverse filter
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Fig. (5): Line plots through the x-center of
Fig. (4a,b,d,e) respectively.

(d) Restored image with -
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Fig. (6): Line plots through the y-center of

Fig. (4a,b,d,e).

The plots shows very clearly that
the psf that estimated by Wiener filter
is very close to that of the original
actual psf that used in the convolution
process that generates Fig. (4b).

The original image of Saturn as
shown in Fig. (4a) and the restored
blind image of the modified algorithm

are then normalized to one at
maximum and the two-dimensional
error is then calculated by direct

subtraction. The perspective error
demonstrated in Fig. (8). The results
indicates that the error with Wiener
filter is much more smoother than that
of inverse filter.

oo
[a) 30 residual with inverse filter
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0o
(b} 30 residual with Wiener filter

Fig. (8): Perspective plot of the residual
between restored and original images.

t should be pointed out here that
the iterations is stopped until there is
no significant change is the residual
errors that given by Eq. (11).

he values of SNR parameters of the
Wiener filter in the adaptive algorithm
are taken according to the following
figures:
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(a) psf plane
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(&)
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Fig. (9): Residual error as a function of SNR
parameter of the Wiener filter:
(a) he psf plane. (b) he image plane.
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For blind restoration, the value of SNR
of the Wiener filter in the psf
environment is taken when

1 )
N > |(psf, —psf, )| = min.

The following figure shows very
clearly that at SNR=2.25 the curve is
so smoothed and there is no sudden
changes or peaks that appear with other
values

-25

3

o
i

log(residual emory
= n
in =

in

in
o

&

i} 1 2 3 4 5 3 7 & a 10 "

iteration

Fig. (10): Residual error as a function of
iterations for psf.

Conclusions
The conclusions that could be drawn

from this study are:

1. The residual error that obtained from
the subtraction of restored image and
original undegraded image is much
less in the case of Wiener filter.

2. The psf that estimated by Wiener filter
is much closer to the actual psf that
used in the convolution process.

3. The equatorial cloud built is much
sharper in the case of Wiener filter.
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