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Abstract:   

 Elastic magnetic M1 electron scattering form factor has been calculated for the 

ground state J


,T=1/2-,1/2 of  
13

C. The single-particle model is used with harmonic 

oscillator wave function. The core-polarization effects are calculated in the first-order 

perturbation theory including excitations up to 5ħω, using the modified surface delta 

interaction (MSDI) as a residual interaction. No parameters are introduced in this 

work. The data are reasonably explained up to q~2.5fm-1 . 
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Introduction  

The scattering of high energy 

electrons from nuclei is a good way to 

extract information on both nuclear 

structure and properties of bound 

nucleons.  

The elastic M1 form factor of  
13

C 

has been measured by Hicks  

et al. 
[1]

 to a maximum momentum 

transfer of 3.29 fm
-1

. Their 

investigation includes theoretical 

attempts to explain the experimental 

data using 1p-shell model, with and 

without one-pion exchange currents. 

Donnely and Sick 
[2]

 noted the 

particular importance of (2p)
2
 matrix 

element by including this term with the 

modest one-body density matrix 

=0.04, the data could be fitted 

adequately up to q  3 fm
-1

. 

K. Singham 
[3]

 calculated the 

transverse form factors for the ground 

and 11.15MeV states of 
13

C using the 

configuration mixing within the 1p-

shell. 



R. A. Radhi et al. 

 15 

Sato et al. 
[4]

 studied the electron 

scattering on 
12

C and 
13

C by the 

nuclear shell model to investigate M1 

and E2 nuclear form factors. The 

effects of core-polarization and pion-

exchange current were taken into 

account. The diffraction minimum 

shifted to  

q 1.2fm
-1

. 

Hicks et al. 
[5]

 measured the M1 

form factors to q4.6fm
-1

. A 

comparison was made with theoretical 

form factors  which are calculated by 

using harmonic-oscillator and Woods-

Saxon wave functions. 

Amos et al. 
[6]

 analyzed the form 

factors for the ground state 

(1/2
-
1/2) and (3/2

-
 1/2) state in 

13
C and 

13
N, respectively.  

The upper limit of q at 5.08 fm
-1 

 is 

measured in elastic M1 form factor of 
13

C by Miskimen et al. 
[7]

. Their results 

show that the elastic magnetic form 

factor continues  to decline at q = 5.08 

fm
-1 

. Their calculation within 1p-shell 

space succeeds in fitting the data only 

to q  2 fm
-1

 as previously noted by 

Singham 
[3]

.  

Cheon and Jeong 
[8]

 performed 

calculations with the modified nucleon 

form factors, using effective parameter. 

Their results succeeded in reproducing 

the experimental data at q  2.5 fm
-1

 .  

Ismatov et al. 
[9]

 obtained good 

description for the elastic M1 form 

factor of  
13

C. Translation Invariant 

Shell Model (TISM) were used. 

The present work aims to study the 

effects of core-polarization on the 

elastic magnetic electron scattering 

from 
13

C, where the experimental data 

are available for large momentum 

transfer. 

The single-particle wave function 

of the harmonic oscillator (HO) 

potential are used with size parameter 

b = 1.628 fm chosen to reproduce the 

measured root mean square (rms) The 

single-particle form factor of the 

magnetic operator is defined by 
[11]

: 
2

bjblbn)zt,q(JT̂ajalan

)1bj2(
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2
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center of mass which is inherent in the 

fixed-center shell-model formulation. 

The convential harmonic-oscillator 

approximation for this  correction is 

used to give 
[11,12]

: 

 where < ||  || > is the single-particle 

matrix element. 

       The )q(F m.c  is the center of mass 

correction. It divides out the form 

factor due to the spurious motion of the 

 A4/bq

m.c

22

e)q(F                               (2) 

where b  is the harmonic-oscillator size 

parameter and A  is the nucleus mass . 

      The )q(F s.f  is the correction factor 

which takes into account the finite  size 

of the nucleus and given by 
[12]

: 
4/q43.0

s.f

2
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of the matrix elements reduced in both 

angular momentum and isospin spaces: 

Using the Wigner-Eckart theorem, the 

form factor can be written in terms 
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The core-polarization effects is 

included through the first-order 

perturbation theory as[13]:-  
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these terms are evaluated as 
[13]

: 
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spaces, and taking care of the proper 

normalization of the angular 

momentum coupled two-particle states, 

with concise Green symbols to denote 

the quantum numbers, one can obtains 

from equation (6) the expression, 

where the summation covers all 

possible particle-hole states, and ei is 

the single-particle energy. 

Using Wigner-Eckart theorem to 

reduce the single-particle matrix 

element in both spin and isospin, 
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The contribution from equa.(7) can 

be evaluated similarly, one finds 
[13]
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elements which are given in equations 

(8) and (9). 

The total form factor is calculated 

from equation (4) by replacing the 

single-particle matrix element by 

following expression, to include the 

core-polarization effects:  

The core-polarization form factor 

can be evaluated by replacing the 

single-particle matrix element in 

equation (4) with the two matrix 
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where the Modified Surface Delta 

Interaction (MSDI) can be expressed 

as
[13]

: 

 
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)2(r)1(rTA4)2,1(
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where TA ,B`, and C` are strength 

regarded as free parameters that must 

be determined from experimental 

spectra. 

   

Results and Discussion 
The elastic  M1 scattering has 

greatly enhanced our understanding of 
single-particle aspects of nuclei. The 
single-particle prediction is shown in 
Fig. (1) as a dashed curve. This 
description is unsatisfactory, especially 
at high momentum transfer and fails to 
locate the diffraction minimum. The 
contribution of the core-polarization is 
indicated by the dotted curve. The 
inclusion of the core-polarization 
effects shifts the location of the 

diffraction minimum to q  1.04 fm
-1

 
as shown by the solid curve, in good 
agreement with the measured data 

[1,5,7]
 

at this region of q. Also, the M1 form 
factor is suppressed at the second 
maximum and gives a good description 

of the experimental data up to q  2.3 
fm

-1
. The calculated form factor 
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underpredicts the data at higher 
momentum transfer. This deviation 
cannot be attributed to non-nucleonic 
effects, since meson-exchange currents 
(MEC) contribution has been included 
recently 

[14]
 and showed minor 

contribution in this region of q. The 
suppression of the form factor was 
introduced empirically by Amos et 
al.

[6]
 by applying a suppression factor 

to the isovector spin amplitude, while 
effective g-factors were introduced 
recently 

[14]
 to reproduce the measured 

magnetic moment (exp.=0.702nm) 
[15]

. 
In the present work, the suppression is 
due to the contribution of core-
polarization effect, where a 
microscopic calculation is performed 
and given a reasonable value of 

magnetic moment ( = 0.46nm).  
The core-polarization effects 

introduced through different procedure 
are further illustrated in Fig. (2). The 
present calculations are indicated as a 
solid curve and compared with the 
recent work 

[14]
 as introduced by 

dashed curve, which incorporated the 
reduced size parameter (b=1.54fm). 
The higher q-data are still 
underestimated and therefore the 

13
C 

elastic magnetic form factor needs 
more understanding. 
 

Conclusion 
       For large momentum transfer 
values no calculation reproduces the 
data variation,the high q data (q>4fm

-1
) 

electron scattering form factor is most 
unusual. But the inclusion of the core-
polarization effects give agreement 
with the experimental data at the low 
momentum transfer. The high 
momentum transfer enhancements 
could be attributed to the second-order 
core-polarization effects. 
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