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Abstract

The purpose of this paper is to study the properties of the
partial level density g,(g)and the total level density g (¢),

numerically obtained asa | sum of g,(¢) upto

Keywords

Level Density
Harmonic — Oscillator

Potential Well
| <34, for

a Harmonic — Oscillator potential well. This method applied the

quantum — mechanical phase shift technique and concentrated
on the continuum region. Also a discussion of peculiarities of
quantal calculation for single particle level density of energy —

dependent potential.
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Introduction

An essential element of the theory of
nuclear structure and nuclear reactions is
the single particle level densityg(s),

associated with nucleus mean field.

The nucleus level density p(g)
needed for the description of nuclear
reactions, also the quasiparticle level
density used in describing pre -
equilibrium nuclear reaction , and for the
calculation of the partition function.

We stress that for an accurate
description of these physical quantities one
needs to know g(e) for a wide range of

(E), including the continuum region.

90

The method used in the literature [1 -
5] for descretizing the continuum, using
adopting an infinite potential well, by
diagonalsing the finite well Hamiltonian in
the space associated with an infinite well
Hamiltonian, when the nucleus putting in
an infinite box or by locating the energies
of the single particle resonances . This
leads to a single particle level density
g(&)which increases with (g) in the

continuum.

A proper accounting for the
continuum is important for determining
nuclear properties, especially of an excited
nucleus [5].
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Formalism

We consider a particle, such as the
nucleon, moving in a single particle mean
field and follow the effective potential.

R I1(1+1)
2

V() = = mw?r? +
2 2Zm T

where m = the mass
O=21 Vv
_h !
h = /27z Blanck's Constant

| = Angular Momntum

For a given single particle Hamiltonian
is

~ B2

H=—4+V(r

V()

For an infinite potential, V/(r) , all eigen

states of (H) are bound and g(¢) is given

by .
g(e) = X;6(e — &) e 2)

and 1,’)1- is the given Eigen function for the
single particle .

Our main objective is to consider the case
of a finite Harmonic-Oscillator potential ,
such as the mean potential describing a
nucleon in the nucleus . In this case the
incident particle spectra consists of bound

states at £ < 0, and unbound continuum

states at € = 0 . We will concentrate in

this work on the study of the continuum
states . If we contain the system described
by eq.(1) in an infinite spherical box with a
radius R larger than the range of V/(r) , the
continuum would be discretized . However
, the level density g(e)calculated from
eq.s(2) &(3) , will depend mainly on R .
As it increases with R for € = 0 . This is

due to the fact that g(E) includes the
contribution of the so — called free — gas
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level density gf(f) which can be

determined by using the free particle
Hamiltonian:-

" p2

Hi=— .

0 2Zm (4)
Therefore, the single particle level

density associated with a finite potential,
V/(r), can be obtained from.

9(&) = limgos (90(8) — g7 (£) }(6)
where g, and g are calculated by

using FI &flﬂ , respectively . In this

work we consider the single particle level
density for a neutron in a nucleus , using a
Harmonic — Oscillator potential well
without a spin — orbit term, carrying out an
angular momentum decomposition of ¢
we write :-

l
gle) =X75* 22l + 1) g,(e) —(6)
where the factor 2(21 + 1) represent
the counting of spin and the spherical

potential  degeneracy, and gl(E),

represent the partial level density which
can be obtained by two contributions, one
of bound states contribution , that labeled

Uri (£) . and the second one is labeled

gl (E) which represents the contribution
of the states in the continuum, then

g1(€) = gpi(e) + go(€) )

where gm(f) is the contribution

of the bound states of H with Eigen
energies (Eﬂi) , and it is given by .

g () = Esmﬂ,'ﬁ (€ — &) @)

Determination the contribution of states
in the continuum g, (E)

In order to find the single particle level
density in the continuum region, we should
firstly find the Eigen function that



Iragi Journal of Physics, 2011

combined the neutron in the continuum.

The undisturbed wave is represented by
the wave plane e™Z  (Bom

approximation), and e*Z | can be

represented by the spherical Harmonic
wave function as follows:

ez =3, 4,(r) Y1,(6) 9),
then,
! ) :g NS iHl[E—i(kr—ln/Q) _ ei(k’r—tn/Q]l YLO(B)

The first term between the brackets
represent, wiﬂmmiﬂg, and the second

term represent , Woytgoing . While the

scatterer affect only on the outgoing wave,
so let this effect is represented by the

factor , (T;) , then |

n

g_i(kT_ITH) - ngi(w T)l YLO(H)

§(r) = k—\/f; A1

so the outgoing wave is

[ . i
Vo) = e Va0 el 1, (6)
Nowlet 7 = et41(&) ¢

X I
P(r)~cost. i EI(W_TMI(S})

From the boundary condition

Y, (0) = 0, then

that,

Y(r) wcons.i sin [k‘r — %r + ﬂi(f)]
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which is asymptotic to the solution of the
wave equation in classical mechanic ,

x = Asin(wt)

now since , Y; (R) = 0, then equation
(14) equal to zero . For that ,

kR —%T+ A,(e) =snm

where,
s = is integer number 12,3, .....

Then by taking the derivative with
respect to(E), and multiplying by
2(21 + 1), we obtain

2(21+1) dayle) | 2(21+1) dk
die) T ds

gcl(f) —

It is easily to recognized that the second
term of eq.(16) is proportional directly to
(R), where its contribution of free gas

obtained from, (Hp), using a spherical
box of radius (R) , and if we subtract the
contribution of the free gas, we obtain :-
2(214+1) da;(=)
de

gcl(f) —

Finally the total partial level density, ? | (¢)
can be written as.

2(214+1) day(e)
de

gle) =2, 2Q1+1) (-

Determination of phase shift

The relation govern the phase shift is given

by [6].

kR j] (kR)-B,j;(kR)

A Ay = e R -5 —(19)
1 ini(kR)
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2mE
ﬁz

Where k = is the wave

number and
R = being the range of potential

j,(kR) = Spherical Bessel Function
and
n;(kR) = Spherical Neumann Function

It is common to use the logarithmic

derivative,p, — (A'Eﬂ d,i;f}) , to
I r=R

determine  4;, and investigate its

properties . This computed for the wave
function at distance, r=R ,

A, (r) =eYcos4; j(kR)—sind; m(kR)]

As shown from eq.(19) , that the
problem of determining the phase shift is

just how to obtain , B .

Now, B; , can be found by solving

Schrodinger equation for , 7 << R | (that

is inside the range of potential ). For a
spherical symmetric potential, we can
solve Schrodinger equation in three
dimensions by looking at the equivalent
one — dimensional equation.

a2 d2u 2 2m i+1) .
dr2 (k R2 V- re ) w =0
------------------ (22)

Whereas it was mentioned previously in ,
eq.(21) , then

Ar) = —

Also we have adopted for the spherical
Bessel Functions, j;(x) , and , 1;(x) |
the convention
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sin x COSX

fﬂ(x) = ’ no(x) =

And for higher, I, the spherical Bessel

Functions are determined from the
recursion relation .

() + frr(0) =25 ()
where , f7(x) , stands for , j; ,or, 1, .

Also, j; , & ,m; , are determined from the
relation ,

Xfi' =xfi— x freq e (26)

Consequently eq.(18) is written as :-
)= Leya202141) =

2 dﬂﬂ,(s}
ds

2 (21 +1) 22

where the first term of eq.(27) represent
the partial level density for the bound
states , and the second and third terms ,
represent the partial level density for the
unbound states .

Also we have employed in this work the

well — defined Strutnisky smoothing
procedure.
gse(e)= [ g(e") 6(e —&':T) de’

using the function

8+ 1) = Zrexp[-(e/T)] Ly [(e/T)?]

Where, Li;z [(e/T)?] , represents
Lagurre Polynomial account for curvature

exp[ ~e- (N+%)hw]2]
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correction . In this work we neglect this
correction because we use the simple
Harmonic potential instead of Saxon-
Wood potential [7,8]. In our calculations

we use I'=15 hw, with,
_ 45 25
hm — m —m MEV , where A

is the mass number .
Total Level Density

As it has been mentioned that eq.(27)
represent the partial level density for one
shell , either proton or neutron shell.

Now for calculating the total level
density, we take the summation of partial
wave, that analyzed for,

[=0, to, 4.

g(e) = Yimax gz(¢) 4 yimax gn(y)

where gf(f) , stands for proton shell ,

while , g? (E) , stands for neutron shell ,

and for reduction we multiply one term of
eq.(30) by 2 to contain the both shells ,

because (N = 2n+1—2) for the

two shells (protons & neutron ) are the
same for the most nuclei, however the
difference for some nuclei does not exceed
than one, then eq.( 30 ) can be written as
follows ,

g(g) = 2 ¥ymax g, (&) (31)

Results and Discussions

As shown from Fig.1. that the level
density increases with A for energies
below than 4.4 MeV , while the level
densities decreases with A for energies
higher, and this behavior is interpreted that
in low energies the neutron will spend a
relative long interval inside the nucleus,
according uncertainty principle

AE At = h , which causes the increase
of level densities at low energies.
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Fig. 2 represents the results of present
work, which shows that the level densities

increases [, ... , while Fig.3 represents the

single particle level density that had been
done by [1, 9] who used Saxon- Wood
potential, and both results were done for a
super heavy nucleus A=274 .

Conclusions

We conclude that this work can be used
to calculate level density up to 10 — 17
MeV , with total angular momentum not
exceed (34) because the potential that
used in this work is a Harmonic —
Oscillator potential, while using Saxon —
Wood potential leads us to maximum
energy about 350 MeV, with total
angular momentum not exceed (50) .
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Figure (1): The calculated single level density for different nuclei.
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Figure (2) Single particle level density for A equal to 274 and different I,
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