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Abstract Keywords 

Nuclear emission rates for nucleon-induced reactions are 

theoretically calculated based on the one-component exciton model 

that uses state density with non-Equidistance Spacing Model (non-

ESM). Fair comparison is made from different state density values 

that assumed various degrees of approximation formulae, beside the 

zeroth-order formula corresponding to the ESM. Calculations were 

made for 
96

Mo nucleus subjected to (N,N) reaction at Emax=50 MeV. 

The results showed that the non-ESM treatment for the state density 

will significantly improve the emission rates calculated for various 

exciton configurations. Three terms might suffice a proper 

calculation, but the results kept changing even for ten terms. 

However, five terms is found to give the most appropriate conditions 

for calculation time and accuracy. 
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مدة على النموذج الغير حساب معدلات انبعاث الجسيمة من التفاعلات المحفزة بالنويات المعت

 متساوي البعد 

 
 أحمد عبد الرزاق سلمان

 جامعة بغداد –كلية العلوم  –وحدة تكنولوجيا المعلومات 

 

 الخلاصة 

حُـسبت معدلات الانبعاث النووية من التفاعلات المحفزة بالنوية نظريا بالاعتماد على نموذج الجسيمة المهيجة 

تراض التوزيع الغير متساوي البعد في حسابات كثافة الحالات النووية.  فات وبالنظام مكون من نوع واحد من الجسيم

أجُريت مقارنات كافية لقيم كثافة المستويات المختلفة على افتراض عدد من المعادلات التقريبية، بالإضافة إلى المعادلة 

الصفرية التي تمثل حالة التوزيع المتساوي. الحسابات أجُريت لنواة 
96

Mo عند طاقة عظمى عة لتفاعل )نوية،نوية( خاض

سيحسن  التوزيع الغير متساوي البعد في حسابات كثافة الحالات النوويةمليون إلكترون فولط. بينت النتائج أن تأثير  05

وبصورة مميزة من معدلات الانبعاث النووية ولمختلف التوزيعات. لوحظ أن ثلاثة حدود في حساب كثافة الحالات قد يفي 

ة مناسبة، لكن النتائج استمرت بالتغير البسيط ولحد عشرة حدود. وُجد أن خمسة حدود تعتبر الحالة الملائمة والتي تجمع بدق

 بين دقة الحسابات وزمن الحساب.  
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   List of symbols used in this work. 

 A Mass number of the target nucleus 

Ap,h Pauli blocking energy 

B 
Binding energy of the emitted 

nucleon  

Cak and Cbj Numerical coefficients   

E Excitation energy 

F Fermi energy of the target nucleus 

T(p,h,n,E) 
Equilibration time for the exciton 

state described by  (p,h,n,E) 

W(p,h,n,E) 
Particle emission rate from a state 

defined by (p,h,n,E) 

)( oxx     The Heaviside step function 

d  
Energy spacing in the ESM 

approach 

go ,g, gp and 

gh  

Single-particle level density 

(s.p.l.d.) respectively for the ground 

state, the average excited states, 

particle and hole   

hp, 
Correction term due to Pauli 

principle 

  Exciton energy 

 p, h, E

State density of the system for p 

particles, h holes and excitation 

energy E. A superscript (E) stands 

for Ericson's formula, and (W) for 

Williams' 

 (p)
 and 

 (h)
 

Single particle and hole excitation 

energies 

n, p, h 
Exciton, particle and hole numbers; 

n=p+h 

ro, m 
Nucleon classical radius and its 

effective rest mass 

sb Spin of the emitted particle  

b 
Reduced mass of the (emitted 

particle-residual nucleus) system 

)( r  Inverse-reaction cross-section  

 

Introduction 

State density has a major importance in the 

calculations of the nuclear exciton model. 

This model, first suggested by Griffin [1] 

as a semi-classical model, describes 

nuclear reaction between incident 

projectile and target nucleus as a series of 

exciton (particle and hole) creation, a 

process responsible of distributing the 

incident energy among nuclear 

constituents thus gradually exciting the 

nucleus. The final state in this process is 

the equilibrium state, where the compound 

nucleus is created. During exciton 

development, nuclear emission might take 

place. The mechanism of exciton creation 

explains energy sharing and nucleon 

emission, which is expressed by the ratio 

between (partial) state density of residual 

states to that of the initially excited state. 

This model was rapidly developed, over 

the past decades and it is represented in the 

present day as a family of models that aim 

to explain nuclear reactions responsible of 

continuum emission [2-8]. Such emission, 

the Preequilibrium Emission (PE), well 

describes nuclear reactions of various 

projectile-ejectile types at intermediate 

energies (~10-150 MeV).  During the 

development of the exciton model, there 

had been many important corrections 

added to state density calculations in order 

to improve the overall results of the model. 

Such corrections included Pauli principle 

[9], pairing [10-11], surface and finite-well 

depth corrections [12,13], shell effects 

[14],  and other corrections [15-18].  

In this paper, the state density 

calculated from the non-ESM system are 

applied to the emission rate for 
96

Mo, 

suffering from (N,N) reaction at maximum 

energy 50 MeV. This is compared with 

various approximation terms as well as 

with emission rates calculated from the 

ESM approach. Detailed discussions are 

given for the effects of approximation 

terms, exciton configuration and excitation 

energy. Beside this, an emission rate 

calculation has been performed for the 

conditions of bounded and unbounded 

particles states. 

  

State Density of Nuclear Exciton States 

A key parameter in state density 

description is the single-particle level 

density (s.p.l.d.), g. In general, two 

approaches are available to describe 

s.p.l.d. dependence on the particle and hole 

energy levels, p and h  from Fermi 

surface F. The first approach assumes that 

g is constant of energy for all particle-hole 

states, and is called the Equidistance 

Spacing Model (ESM). The second 

approach represents the more realistic one 

where an attempt is made to describe the 
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dependence of g on p and h , and is 

called the (non-ESM). There are two types 

of the exciton model, the one-component 

model which assumes that protons and 

neutrons are indistinguishable particles, 

with total exciton number  being n=p+h; 

and the two-component model which 

describes nucleons separately assuming 

proton particles p , proton holes h , and 

neutron particles and holes p and h , 

respectively, and . hphpn   

In the ESM approach, the s.p.l.d. assumes 

the existence of an average energy spacing 

d between adjacent levels then, 

 )1(,
d

A
g   

where the value of d varies from (8-25) 

MeV, but is usually taken from (10-15) 

MeV. Formula (1) is typically used for a 

mass number A≥40 and excitation energy 

E≥15 MeV [15].  

In the one-component, the s.p.l.d. for 

particle and holes is described as [19] 
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where  is Dirac delta function which is given in its integral form,   
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In the ESM approach, one means that 

ogg )( , then eq.(3) reduces to the 

simplest state density formula due to 

Ericson  [21], 
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if  Pauli exclusion principle was introduced 

to eq.(5), then Williams' formula [9] will be 

obtained, 

 
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where an assumption is made that gp=gh=g. 

In eq.(6), Pauli term is given as,  

)7(
4

)3()1(
,

g

hhpp
A hp




 

and )( ,hpE   is the Heaviside step 

function defined as, 
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 and the correction term hp, is given as 

[9], 

)9(.
2

)1()1(
,

g

hhpp
hp


   

In non-ESM  system, it was shown [20] 

that the simplest but complete solution is,  
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where the indices ak and bj in eq.(11) 

describe the degree of accuracy for the 

system. It can be easily shown that the 

zeroth-order degree of eq.(10) will lead to 

Ericson's formula, eq.(5). When taking 

Pauli correction, eq.(10) will be given as  

[20],  
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Earlier attempts [19,22] studied the 

s.p.l.d. dependence on energy for the first 

three terms. Thus, our earlier treatment [20] 

gives the general treatment for state density 

calculations. It is important to remember 

here again that eq.(10) takes no restrictions 

on B and  F yet, thus it still represents an 

approximation.  

In the exciton model formulation, 

particle emission rate of a particle of type b 

due to nuclear reaction to the continuum is 

given by the relation [8] 
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where )( r is the inverse-reaction cross-

section and it can be calculated from the 

systematics found in PRECO-2006 manual 

[23]. Thus, the emission spectrum of a 

particle of type b will be calculated from 

[8], 
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where T(p,h,n,E) is the equilibration time 

calculated from the solving the master 

equation of the system and integrating the 

resulting occupation probabilities over 

time. Equilibration time calculation 

depends on the internal transition rates of 

between exciton states and the latter also 

depends on the state density to a high 

degree. For details of equilibration time and 

master equation solution methods see Ref. 

[20, 24, 25]. The importance of the state 

density in the exciton model calculations 

can be seen clearly from the above 

formulae.  
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Calculation Codes  

A library of MATLAB codes were written 

to calculate the emission rates based on 

various state density formulae. All 

calculation were performed for one-

component, for nucleon reaction and 

emission only. Most calculations aimed to 

find the numerical result of eq.(13) where 

most comparisons are made.  

The input parameters used in this work 

are listed in Table (1) for two general 

calculation modes, those with F=40 and 

B=10 MeV (the bounded particle mode) 

and F=100 MeV, B=0 MeV (the 

unbounded particle mode). These modes 

are chosen to explain the effects of B and F 

on the calculations. All other input 

parameters were the same, and those are: 

A=96, Z=42, d=13 MeV, and go=A/dMeV
-1

.  

 

Results and Discussions  

As seen from eq.(13), the state 

density enters in the emission rates by the 

form of the ratio between state density of 

residual nucleus ),1,,1( Unhp  to that 

of the excited one ),,,( Enhp . This ratio is 

found from the exciton configuration of 

(p,h)=(1,1), (2,1), (2,2) and (3,2) calculated 

for the ESM system. 

  

Table (1). Input parameters of the present 

work. 

Input 

parameter 

Bounded 

particle mode 

Unbounded 

particle 

mode 

F 40 MeV 140 MeV 

B 10 MeV 0 MeV 

Emax 50 MeV 50 MeV 

(p,h) 
(1,1), (2,1), (2,2), 

(3,2) 

(1,1), (2,1), 

(2,2), (3,2) 

Calculation 

terms 
1, 2, 3, 5, 10 3, 5 

 

Corresponding configurations for the 

residual nucleus in this case are: 

(p,h)=(0,1), (1,1), (1,2) and (2,2), 

respectively, since we assumed nucleon 

emission only and the maximum n=5. This 

ratio is the only parameter changing during 

emission rate calculations since all the 

other parameters of eq.(13), namely, 

),(
)12(

32



rb

bs




 remain the same 

for all the cases under study. Because of its 

importance in the exciton model, the 

calculations and comparisons made in this 

paper are for the emission rates, rather than 

the ratio between state densities only.  

In Figure (1-a), a comparison is made 

for the calculated emission rates for 
96

Mo 

nucleus from (N,N) reaction at 50 MeV, 

assuming Ericson's formula for the ESM 

system, eq.(5), and the simple non-ESM 

formula eq.(10). The assumed number of 

terms was set to (5) in the non-ESM case. 

The difference between the configuration 

(p,h)=(1,1) is quite obvious, where in the 

ESM case a smooth variation occurred in 

the entire calculated range, while in the 

non-ESM system the calculated rate started 

at energies about 10 MeV. This is 

explained due to the effect of the exciton 

configuration in the non-ESM calculations, 

where at low energies a negative (non-

physical) value of the non-ESM state 

density are found, which is set to zero in 

the code. At (p=1) in the excited nucleus, 

the (p-1) in the residual nucleus will return 

zero value and the exciton configuration 

will read (0,h), thus all summations of p in 

the operator 


 of eq.(10) will be not 

contribute in the calculation leaving the 

first few terms with negative output. From 

the shape of eq.(10), one may interpret such 

a result for any total energy E larger than F. 

This clearly indicates that the application of 

this formula at such energies requires more 

caution. It is important here to mention that 

in earlier calculations [20], this was not 

clearly found since no practical calculations 

were made to investigate the effects of the 

non-ESM state density on nucleon emission 

rates. The same calculation was repeated 

for the unbounded conditions -Table (2)- 

and the result is shown in Figure (1-b). The 

results of (1,1) are now in a better 

accordance with other configuration results. 

The end of lines in Figure (1-a) occurred 

at ~40 MeV, which is due to the effect of 
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B. The code EMNUR2 loops the value of 

 from (0 to Emax-B).  

Aside the case of (1,1), all other 

configurations share the same behavior, 

where in general the non-ESM emission 

results (with bold lines) are less than those 

due to the ESM. Earlier study [20] showed 

that the values of the state density in the 

non-ESM system are less than the ESM. 

Thus, it is clear now that both the ratio 

between state densities and the individual 

values are both less in the non-ESM, even 

though the present formalism still 

approximate. 

In Figure (1-c), the same comparison is 

made when calculating the non-ESM for 10 

terms. The general observation in all  

 

these figures is that, as the exciton 

configuration develops the emission rates 

peaks to higher values at low energies and 

drop faster at higher energies. This is seen 

in all the present results. The only 

exception is the case with configuration 

(1,1) again, where the behavior indicates a 

saturation limit. In fact, this case is clearly 

seen from comparison of the ESM cases 

only for both Ericson and Williams' 

formulae, as given in Figure (1-d). Also it 

is noticed that the differences between both 

types of formulae are small at such reaction 

energy (0-50 MeV). The non-ESM 

comparison is given in Figure (1-e) for the 

same configurations. Comparing both these 

figures also indicates the amount of 

correction added when using the non-ESM 

treatment. 

 

 
 

   

 
 

 

Figure (1-a). A comparison between emission rates calculated from Ericson's formula and the simplest 

non-ESM formula for 
96

Mo target at 50 MeV, for various configurations. Bounded conditions are used.  
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 Figure (1-b). The same as Figure (1-a) for unbounded conditions.  

  

   

 
Figure (1-c). The same as Figure (1-a) with 10 terms of calculation for bounded conditions.  
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Figure (1-d). A comparison between emission rates calculated from Ericson's and Williams' formulae in 

the ESM system, for 
96

Mo target at 50 MeV and for various configurations. Bounded conditions are used. 

 

  

 
Figure (1-e). A comparison between emission rates calculated from simple non-ESM and the non-ESM 

with Pauli correction formulae, for 
96

Mo target at 50 MeV and for various configurations. Only 5 terms 

are used with the bounded conditions.  

 

 

A similar behavior is found when 

calculating emission rates from Williams' 

formula (6) and the non-ESM with Pauli 

correction formula (12), as shown in Figure 
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(2-a), for the bounded particle conditions. 

Figure (2-b) shows a comparison for the 

above results to see the effects of 

calculation terms more clearly for (p, 

h)=(1,1).  From Figure (2-b), the important 

observation is that increasing the number of 

terms  reduces the emission rates at the 

same emission energy. This indicates that 

the ratio of the state densities is reduced 

with increasing the number of terms. The 

values shown in this example also  signifies 

the differences of emission rates between 

ESM and non-ESM emission rates when 

plotting with linear axis of W(p,h,n,E). 

Similar comparisons are made in Figures 

(2-c) and (2-d) for exciton configurations 

(p, h)=(2, 2) and (3, 2), respectively.  

Another comparison is made with the 

summation of the emission rates for 

different systems and terms, where the 

differences are reasonably large and 

obvious. This is made in Figure (3) where 

all the used calculations are joined by 

means of their sum values, for bounded 

particle condition. First, it can be seen that 

the calculations with only one term lays 

between the zeroth-order approximation, 

the ESM, and the non-ESM system. Using 

two terms greatly modifies the calculation, 

while three terms of calculation points out 

the characteristic of the non-ESM treatment 

significantly. When calculating with five 

terms, the behavior continues to change and 

reaches almost the saturation limit, there is 

only some although inconsiderable change 

from this case and the ten terms case. 

Taking this result with the results of the run 

time of the code -Table (3)- under 

consideration, one reaches that five terms 

represent a practical choice for similar 

calculations.  

One last comparison is made in Figure  

(4) between emission rates calculated for 

one-component with both ESM and non-

ESM systems, and the two-component 

ESM system for configurations (p,h)=(2,1) 

and (3,2) in the one-component, and for  

),,,(  hphp  (2,1,0,0) and (3,2,0,0) 

for the two-component system.  

  

 
 

 

 
Figure (2-a). A comparison between emission rates calculated from Williams' formula and the non-ESM 

formula with Pauli correction for 
96

Mo target at 50 MeV, for various configurations. Bounded conditions 

are used.  
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Figure (2-b). A comparison between emission rates calculated from Ericson's and Williams' formulae, with 

the corresponding non-ESM formulae with 5 and 10 terms of calculations, for configuration (1,1). This 

example is for 
96

Mo target at 50 MeV, for various configurations. Bounded conditions are used.  

 

 

 
Figure (2-c). The same as Figure (2-b) for configuration (2,2). 
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Figure (2-d). The same as Figure (2-b) for configuration (3,2). 

 
 

 

 
Figure (3). Comparison of the summation of emission rates from ESM and non-ESM systems with 

various summation terms. Bounded conditions are used. 
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 Figure (4). Comparison of the emission rates from ESM and non-ESM systems for one-

component, with ESM for two-component for 
96

Mo. Bounded conditions are used. 
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All ESM calculations indicated similar 

behavior, although same (total) exciton 

number is used (3 or 5 in this case), two-

component showed less values. This was 

explained [20] due to the effects of sharing 

the excitation energy among more types of 

excitons, rather than numbers.  Both non-

ESM and ESM curves with (2,1) 

configuration contributed with higher 

emission rates at low energies yet dropped 

faster at higher energies, which will appear 

as a contribution in the low-energy 

evaporation (compound) region during 

cross-section calculations. 

 

Conclusions  

Emission rates have been 

numerically calculated for 
96

Mo target 

with (N,N) reaction at 50 MeV. Both ESM 

and non-ESM simple formulae were used, 

and many comparisons were made. The 

final conclusions of this research are: 

1. Earlier state density calculation did not 

reveal the weakness of the simple non-

ESM formula when particle number is 

zero. This is attributed to the effect of 

Fermi energy on the state density 

calculation, for when E>F, some 

restrictions must be noted in the non-ESM 

application. This was obvious in the case 

of (p,h)=(1,1) configuration. 

2. Both value and ratio between residual to 

initial state densities of non-ESM system 

are less than in the ESM. This may 

indicate the importance of the present non-

ESM treatment in the exciton model 

calculation, although it is still an 

approximate one.   

3. A general observation is seen that as the 

exciton configuration develops, the 

emission rates peaks to higher values at 

low energies and drop faster at higher 

energies. This case becomes more evident 

in the non-ESM system and it was 

explained due to the more corrected 

energy-dependence of the s.p.l.d. of the 

system.  

4. The important remark found is that, 

increasing the number of terms  reduces 

the emission rates, for the same 

configuration when using the non-ESM 

rather than the ESM state density 

formulae.  

5. Using 3 terms in the non-ESM might 

suffice to give correct treatment, but 

results indicated that changes continue to 

occur for five terms and even for ten 

terms, although with decreasing 

significance. Comparisons of accuracy 

with run time strongly favor the five terms 

calculation.  

 

References 

[1] J. J. Griffi: Phys. Rev. Lett., 

17(1966)478. 

[2] M.Blann: Ann. Rev. Nucl. Sci., 

25(1975)123. 

[3] M. Blann: Phys. Rev. Lett., 

18(1968)1357.  

[4] M. Blann: Phys. Rev. Lett., 

27(1971)337. 

[5] M. Blann and M. B. Chadwick: Phys. 

Rev., C57(1998)233. 

[6] M. Blann: Phys. Rev., 

C57(1998)233. 

[7] J. Dobeš and E. Bĕták: Z. Phys., 

A310 (1983)329. 

[8] C. K. Cline and M. Blann: Nucl. 

Phys., A172(1971)225. 

[9] F.C. Williams: Nucl. Phys., 

A166(1971)231. 

[10] Y. C. Fu: Nucl. Sci. Eng., 

86(1984)344. 

[11] C. Kalbach: Phys. Rev., 

C73(2006)024614. 

 

 

 

 



Iraqi Journal of Physics, 2011                   Ahmed Abdul-Razzaq Selman 

 

 89 

[12] C. Kalbach: Phys. Rev., 

C32(1985)1157 

[13] C. Kalbach: Phys. Rev., 

C33(1986)818. 

[14] C. Kalbach: Phys. Rev., 

C47(1993)587. 

[15] E. Bĕták and P. E. Hodgson, 

“Particle-Hole State Density in Pre-

equilibrium Nuclear Reactions”, 

University of Oxford, CERN 

Libraries, Geneva, OUNP-98-02 

(1998). 

[16] M. Herman, G. Reffo, and C. Costa: 

Phys. Rev., C39 (1989) 1269. 

[17] M. Blann: Phys. Rev. Lett., 

28(1972)757. 

[18] M. Avrigeanu and V. Avrigeanu: 

Comp. Phys. Comm., 112(1998)191. 

[19] A. Harangozo, I. Şteţcu, M. 

Avrigeanu and V. Avrigeanu: Phys. 

Rev., C 58(1998)295. 

[20] A. A. Selman: Ph.D. Thesis, 

University of Baghdad-College of 

Science, (2009). 

[21] T. Ericson:  Adv. Phys. 9(1960)425. 

[22] Ye.  A. Bogila, V. M. Kolomietz, 

and I. A. Sanzhur: Z. Phys. A, 

341(1992)373. 

[23] C. Kalbach: “Users Manual for 

PRECO-2006”, Triangle Universities 

Nuclear Lab., Duke University, 

(February 2007). 

[24] M. H. Jasim, S. Sh. Shafik, and A. A. 

Selman: J. Kerbala Uni., 7(2009) 

271. 

[25] A. A. Selman, M. H. Jasim and S. S. 

Shafik: accepted for publication at 

the Iraqi Journal of Science, 

(December 2009).  

[26] A. A. Selman, EMNUR Matlab Code 

(unpublished,2010).

 


