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Abstract Keywords

Nuclear emission rates for nucleon-induced reactions are Particle Emission
theoretically calculated based on the one-component exciton model ~Rates
that uses state density with non-Equidistance Spacing Model (non- Nucleon-Induced
ESM). Fair comparison is made from different state density values ~Reactions
that assumed various degrees of approximation formulae, beside the
zeroth-order formula corresponding to the ESM. Calculations were
made for ®®Mo nucleus subjected to (N,N) reaction at Ema=50 MeV.
The results showed that the non-ESM treatment for the state density
will significantly improve the emission rates calculated for various article info
exciton configurations. Three terms might suffice a proper Received: Mar. 2010
calculation, but the results kept changing even for ten terms. Accepted: Apr. 2010
However, five terms is found to give the most appropriate conditions Published: Jan. 2011
for calculation time and accuracy.
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List of symbols used in this work.

A Mass number of the target nucleus
Aoh Pauli blocking energy
B Binding energy of the emitted
nucleon
Ca and Cy; Numerical coefficients
E Excitation energy
F Fermi energy of the target nucleus
Equilibration time for the exciton
T(p.hn.E) state described by (p,h,n,E)
Particle emission rate from a state
WENNE)  efined by (p.hn,E)
O(X—Xg)  The Heaviside step function
q Energy spacing in the ESM
approach
Single-particle level density
00,0, gpand  (s.p.l.d.) respectively for the ground
Oh state, the average excited states,
particle and hole
a Correction term due to Pauli
p,h incinl
principle
& Exciton energy
State density of the system for p
particles, h holes and excitation
w(p,h,E) energy E. A superscript (E) stands
for Ericson's formula, and (W) for
Williams'
&®and Single particle and hole excitation
e® energies
Exciton, particle and hole numbers;
n,p,h Z
n=p+h
Nucleon classical radius and its
o, M .
effective rest mass
Sy Spin of the emitted particle
Reduced mass of the (emitted
Hp particle-residual nucleus) system
oy (&) Inverse-reaction cross-section

Introduction

State density has a major importance in the
calculations of the nuclear exciton model.
This model, first suggested by Griffin [1]
as a semi-classical model, describes
nuclear  reaction  between incident
projectile and target nucleus as a series of
exciton (particle and hole) creation, a
process responsible of distributing the
incident energy among nuclear
constituents thus gradually exciting the
nucleus. The final state in this process is
the equilibrium state, where the compound
nucleus is created. During exciton
development, nuclear emission might take
place. The mechanism of exciton creation
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explains energy sharing and nucleon
emission, which is expressed by the ratio
between (partial) state density of residual
states to that of the initially excited state.
This model was rapidly developed, over
the past decades and it is represented in the
present day as a family of models that aim
to explain nuclear reactions responsible of
continuum emission [2-8]. Such emission,
the Preequilibrium Emission (PE), well
describes nuclear reactions of various
projectile-ejectile types at intermediate
energies (~10-150 MeV). During the
development of the exciton model, there
had been many important corrections
added to state density calculations in order
to improve the overall results of the model.
Such corrections included Pauli principle
[9], pairing [10-11], surface and finite-well
depth corrections [12,13], shell effects
[14], and other corrections [15-18].

In this paper, the state density
calculated from the non-ESM system are
applied to the emission rate for “°Mo,
suffering from (N,N) reaction at maximum
energy 50 MeV. This is compared with
various approximation terms as well as
with emission rates calculated from the
ESM approach. Detailed discussions are
given for the effects of approximation
terms, exciton configuration and excitation
energy. Beside this, an emission rate
calculation has been performed for the
conditions of bounded and unbounded
particles states.

State Density of Nuclear Exciton States
A Kkey parameter in state density
description is the single-particle level
density (s.p.l.d.), g. In general, two
approaches are available to describe
s.p.l.d. dependence on the particle and hole
energy levels, ¢, and &, from Fermi

surface F. The first approach assumes that
g is constant of energy for all particle-hole
states, and is called the Equidistance
Spacing Model (ESM). The second
approach represents the more realistic one
where an attempt is made to describe the
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dependence of g on Ep andg,, and is

called the (non-ESM). There are two types
of the exciton model, the one-component
model which assumes that protons and
neutrons are indistinguishable particles,
with total exciton number being n=p+h;
and the two-component model which
describes nucleons separately assuming
proton particles p,, proton holes h,, and

neutron particles and holes p, and h,,
respectively, and n=p,+h,+p, +h,.

In the ESM approach, the s.p.l.d. assumes
the existence of an average energy spacing
d between adjacent levels then,
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g:E! (1)

where the value of d varies from (8-25)
MeV, but is usually taken from (10-15)
MeV. Formula (1) is typically used for a
mass number A>40 and excitation energy
E>15 MeV [15].

In the one-component, the s.p.l.d. for
particle and holes is described as [19]

F+5p

gp(gp):go = (2-a)
F-¢

Oh (h) = 9o~ h (2-b)

1 (o 0 2
o(p.hB)= — [ delP g (™) ] " def? gy (e87).. [ 7 dal? g (i)

p'h!

[y de™

o0 o0 p
on(e{™) [, def gn ). [ del gn(a") SE-Y &

h
P> e @
A=1 j=1

where ¢ is Dirac delta function which is given in its integral form,

P h 1 ¢+
SE-Y - g,-):Ej_w dk exp
A=1 j=1

In the ESM approach, one means that
g(¢)=0,, then eq.(3) reduces to the

simplest state density formula due to
Ericson [21],

gnEn—l

E _
o (PR E) =D

Q)

if Pauli exclusion principle was introduced
to eq.(5), then Williams' formula [9] will be

obtained,
g n(E _ Ap,h )nfl )
p'hi(n-21)!
O(E —ap‘h)

o (p,h,E) =

(6)

where an assumption is made that g,=gn=0.
In eq.(6), Pauli term is given as,
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p h
ik[Ez 8/1—2 gj]]. (4)
A=1 j=1
_p(p+D)+h(h-3)
Aph = 4g (7)

and ©(E—«,,) is the Heaviside step
function defined as,
0 E-aph<0
O(E-aph)=
1 E-aph>0

(8

and the correction term «
[9],

ap’h

on IS given as

_ p(p+1)2+ h(h-12). )
g

In non-ESM  system, it was shown [20]
that the simplest but complete solution is,
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non—ESM p"gd - N
@(p,hE) = n1 n/2O = _N-n : (10)
2" 1202 e NN 1)
where
_ 0 0 0 0 0 0 p h
E=D > ) (pgarazretap N 3 T Ca I Co. (11-a)
a1=02,=0 ap=0 b=0b,=0 b—Ok=1 *j-1
p h
N=n+a +ag+..+ap+by+by+..+bp=n+)" aj+> bj,
i=1 j=1
Cak =(ak —gj!
3 ; (11-c¢)
Cp.=|bj—=|
Vi ( ‘ 2)
(25b +1)
where the indices ax and b; in eq.(11) Wy (p,h,n,E) = 2,3 x
describe the degree of accuracy for the 4
system. It can be easily shown that the o(p-1,h,n-1U)
: Hp € oy (&) 13)
zeroth-order degree of eq.(10) will lead to w(p,h,n,E)

Ericson's formula, eq.(5). When taking
Pauli correction, eq.(10) will be given as
[20],

a)non—ESM with Pauli(p’h’ E) _

g6 = E-AEM"T
222 ot ENTY(N -1

(12)

Earlier attempts [19,22] studied the
s.p.l.d. dependence on energy for the first
three terms. Thus, our earlier treatment [20]
gives the general treatment for state density
calculations. It is important to remember
here again that eq.(10) takes no restrictions
on B and F yet, thus it still represents an
approximation.

In the exciton model formulation,
particle emission rate of a particle of type b
due to nuclear reaction to the continuum is
given by the relation [8]
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where o (¢)is the inverse-reaction cross-

section and it can be calculated from the
systematics found in PRECO-2006 manual
[23]. Thus, the emission spectrum of a
particle of type b will be calculated from
[8],

do

(_) => Wy(p,h,n,E) T(p,h,n,E), (14)
de Jp 5

where T(p,h,n,E) is the equilibration time
calculated from the solving the master
equation of the system and integrating the
resulting occupation probabilities over
time.  Equilibration time calculation
depends on the internal transition rates of
between exciton states and the latter also
depends on the state density to a high
degree. For details of equilibration time and
master equation solution methods see Ref.
[20, 24, 25]. The importance of the state
density in the exciton model calculations
can be seen clearly from the above
formulae.

(11-b)
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Calculation Codes

A library of MATLAB codes were written
to calculate the emission rates based on
various state density formulae. All
calculation were performed for one-
component, for nucleon reaction and
emission only. Most calculations aimed to
find the numerical result of eq.(13) where
most comparisons are made.

The input parameters used in this work
are listed in Table (1) for two general
calculation modes, those with F=40 and
B=10 MeV (the bounded particle mode)
and F=100 MeV, B=0 MeV (the
unbounded particle mode). These modes
are chosen to explain the effects of B and F
on the calculations. All other input
parameters were the same, and those are:
A=96, Z=42, d=13 MeV, and g,=A/dMeV™.

Results and Discussions

As seen from eq.(13), the state
density enters in the emission rates by the
form of the ratio between state density of
residual nucleusw(p—1h,n—-1U)to that

of the excited one w(p,h,n,E). This ratio is

found from the exciton configuration of
(p,h)=(1,2), (2,1), (2,2) and (3,2) calculated
for the ESM system.

Table (1). Input parameters of the present
work.

Input Bounded Unbou_n:jed
parameter particle mode particle
mode
F 40 MeV 140 MeV
B 10 MeV 0 MeV
Emax 50 MeV 50 MeV
(p h) (111)1 (211)! (2!2)’ (111)1 (211)1
’ 3.2) (22),3.2)
Calculation 12,3, 5,10 3.5
terms
Corresponding  configurations for the
residual nucleus in this case are:
(p.n)=(01), (1.1), (12) and (2,2),

respectively, since we assumed nucleon
emission only and the maximum n=5. This
ratio is the only parameter changing during
emission rate calculations since all the
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other parameters of eq.(13), namely,
25y +1 _

% Up € or(g), remain the same
7 h

for all the cases under study. Because of its
importance in the exciton model, the
calculations and comparisons made in this
paper are for the emission rates, rather than
the ratio between state densities only.

In Figure (1-a), a comparison is made
for the calculated emission rates for “*Mo
nucleus from (N,N) reaction at 50 MeV,
assuming Ericson's formula for the ESM
system, eq.(5), and the simple non-ESM
formula eq.(10). The assumed number of
terms was set to (5) in the non-ESM case.
The difference between the configuration
(p,h)=(1,1) is quite obvious, where in the
ESM case a smooth variation occurred in
the entire calculated range, while in the
non-ESM system the calculated rate started
at energies about 10 MeV. This is
explained due to the effect of the exciton
configuration in the non-ESM calculations,
where at low energies a negative (non-
physical) value of the non-ESM state
density are found, which is set to zero in
the code. At (p=1) in the excited nucleus,
the (p-1) in the residual nucleus will return
zero value and the exciton configuration
will read (0,h), thus all summations of p in

the operator = of eq.(10) will be not
contribute in the calculation leaving the
first few terms with negative output. From
the shape of eq.(10), one may interpret such
a result for any total energy E larger than F.
This clearly indicates that the application of
this formula at such energies requires more
caution. It is important here to mention that
in earlier calculations [20], this was not
clearly found since no practical calculations
were made to investigate the effects of the
non-ESM state density on nucleon emission
rates. The same calculation was repeated
for the unbounded conditions -Table (2)-
and the result is shown in Figure (1-b). The
results of (1,1) are now in a better
accordance with other configuration results.
The end of lines in Figure (1-a) occurred
ate ~40 MeV, which is due to the effect of
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B. The code EMNUR2 loops the value of
& from (0 to Emax-B).

Aside the case of (1,1), all other
configurations share the same behavior,
where in general the non-ESM emission
results (with bold lines) are less than those
due to the ESM. Earlier study [20] showed
that the values of the state density in the
non-ESM system are less than the ESM.
Thus, it is clear now that both the ratio
between state densities and the individual
values are both less in the non-ESM, even
though the present formalism still
approximate.

In Figure (1-c), the same comparison is
made when calculating the non-ESM for 10
terms. The general observation in all

The non-ESM caculations are made at5 terms
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these figures is that, as the exciton
configuration develops the emission rates
peaks to higher values at low energies and
drop faster at higher energies. This is seen
in all the present results. The only
exception is the case with configuration
(1,1) again, where the behavior indicates a
saturation limit. In fact, this case is clearly
seen from comparison of the ESM cases
only for both Ericson and Williams'
formulae, as given in Figure (1-d). Also it
is noticed that the differences between both
types of formulae are small at such reaction
energy (0-50 MeV). The non-ESM
comparison is given in Figure (1-e) for the
same configurations. Comparing both these
figures also indicates the amount of
correction added when using the non-ESM
treatment.

T T T T T T

1025

o
=4

1023

22

3| —¢ —Ericson (1,1)
1| -~ ©--Ericson 2,1)
4| —8— Ericson {2,2)
1| — —-Ericson (3,2)
1| =€ —simple non-ESM (1,1)
+@rsimple non-ESM 2,1)
| —8—simple non-ESM {2,2)
3| = =+-simple non-ESM (3,2)

= (MeV)

50

Figure (1-a). A comparison between emission rates calculated from Ericson's formula and the simplest
non-ESM formula for **Mo target at 50 MeV, for various configurations. Bounded conditions are used.
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10 -++$---Ericson (1,1)
—& —Ericson 2,1)
1| —=—Ericson 2,2)
—-—-Ericson (3,2)
=& — Simple non-ESM (1,1)
++ € Simple non-ESM 2,1)
10 —&— Simple non-ESM 2,2)
—+=+=Simple non-ESM (3,2)
%
I
a" 24 2
= W
€W 4 \__\ E
§ « A
- \ 1
1023 L ke =
i
‘: 4
11
!_
!
10% 1 1 1 1 | 1 1 1 1 i
0 5 10 15 20 25 30 35 40 45 50
& (MeV)
Figure (1-b). The same as Figure (1-a) for unbounded conditions.
10 ¢ . 1
1| < Ericson (1,1)
1| —% —Ericson 2,1)
4| —8— Ericson {2,2)
1| — —-Ericson (3,2)
{| @ Simple non-ESM (1,1)
—& — Simple non-ESM 2,1)
10% L - —&— Simple non-ESM 2,2)
X 1| = —-Simple non-ESM (3,2)
3 ]
4
G‘ 24
:: 07 - 3
S ]
S ]
E i
10° 1 3
10% 1 1 ] 1 1 | 1 H| |
0 5 10 15 20 25 30 35 40 45 50

= (MeV)

Figure (1-c). The same as Figure (1-a) with 10 terms of calculation for bounded conditions.
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L —4 —Ericson (1,1)
& ---Ericson (2,1)
—{ | —8— Ericson 2,2)
— % -Ericson (3,2)
— = —Williams (1,1)
""""" Williams 2,1)
— Williams (2,2)
== -Williams (3,2)

Wip,h,n,E) (sec’’)

0 5 10 15 20 25 30 3 4D 45 50
= (MeV)

Figure (1-d). A comparison between emission rates calculated from Ericson's and Williams' formulae in
the ESM system, for **Mo target at 50 MeV and for various configurations. Bounded conditions are used.

25

5 x 10
' ' ' ' ' ' f ' ' —& —simple non-ESM (1,1)
/ &> -simple non-ESM 2,1)
45 ¢ || —=—simple non-ESM (2,2)
fl — % --simpe non-ESM (3,2)
& === non-ESM with Pauli {(1,1)
4+ /} o | [PEEE non-ESM with Pauli 2,1)
4;' non-ESM with Pauli 2,2)
s / === non-ESM with Pauli 3,2)
- 3 —
8
@
225 -
=
£
g , i
1.5 -
1 -
0.5 -

0 5 10 15 20 25 30 35 45 50
£ (MeV)

Figure (1-e). A comparison between emission rates calculated from simple non-ESM and the non-ESM
with Pauli correction formulae, for Mo target at 50 MeV and for various configurations. Only 5 terms
are used with the bounded conditions.

A similar behavior is found when formula (6) and the non-ESM with Pauli
calculating emission rates from Williams' correction formula (12), as shown in Figure
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(2-a), for the bounded particle conditions.
Figure (2-b) shows a comparison for the
above results to see the effects of
calculation terms more clearly for (p,
h)=(1,1). From Figure (2-b), the important
observation is that increasing the number of
terms reduces the emission rates at the
same emission energy. This indicates that
the ratio of the state densities is reduced
with increasing the number of terms. The
values shown in this example also signifies
the differences of emission rates between
ESM and non-ESM emission rates when
plotting with linear axis of W(p,h,n,E).
Similar comparisons are made in Figures
(2-c) and (2-d) for exciton configurations
(p, h)=(2, 2) and (3, 2), respectively.
Another comparison is made with the
summation of the emission rates for
different systems and terms, where the
differences are reasonably large and
obvious. This is made in Figure (3) where
all the used calculations are joined by
means of their sum values, for bounded
particle condition. First, it can be seen that
the calculations with only one term lays

The non-ESM caculations are made at5 terms

10 T T T
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between the zeroth-order approximation,
the ESM, and the non-ESM system. Using
two terms greatly modifies the calculation,
while three terms of calculation points out
the characteristic of the non-ESM treatment
significantly. When calculating with five
terms, the behavior continues to change and
reaches almost the saturation limit, there is
only some although inconsiderable change
from this case and the ten terms case.
Taking this result with the results of the run
time of the code -Table (3)- under
consideration, one reaches that five terms
represent a practical choice for similar
calculations.

One last comparison is made in Figure
(4) between emission rates calculated for
one-component with both ESM and non-
ESM systems, and the two-component
ESM system for configurations (p,h)=(2,1)
and (3,2) in the one-component, and for
(Pz. 0z, Py, 0)= (2,1,0,0) and (3,2,0,0)

for the two-component system.

10% ! | | | 1 |

| —4 —williams (1,1)
1| - @ Williams 2,1)
1| —&—williams 2,2)
1| = —--williams 3,2)
1| =€ —non-ESM with Pauli (1,1)
« & non-ESM with Pauli 2,1)
- | —8— non-ESM with Pauli 2,2)
1| = ="~ non-ESM with Pauli 3,2)

0 5 25 30
= (MeV)

50

Figure (2-a). A comparison between emission rates calculated from Williams' formula and the non-ESM
formula with Pauli correction for **Mo target at 50 MeV, for various configurations. Bounded conditions
are used.
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10 T T T T T T T T T

simple non-ESM (1,1), iter=5
C  simple non-ESM (1,1), iter=10
9+ — non-ESM with Pauli (1,1), iter=5
% non-ESM with Pauli (1,1), iter=10
""""" ESM-Ericson (1,1)
O ESM-Williams (1,1)

W (p,h,n,E) sec™?

0 5 1 = 15 20 25 30 35 40 45 50
& (MeV)

Figure (2-b). A comparison between emission rates calculated from Ericson's and Williams' formulae, with

the corresponding non-ESM formulae with 5 and 10 terms of calculations, for configuration (1,1). This

example is for ®Mo target at 50 MeV, for various configurations. Bounded conditions are used.

x 10
3.5 T T T T T T T T T = 5
simple non-ESM (2,2) with 5 terms
O simple non-ESM 2,2) with 10 terms
non-ESM with Pauli (2,2) with 5 terms
3l i % non-ESM with Pauli (2,2) with 10 terms
""""" ESM-Ericson {2,2)
0O ESM-Williams (2,2)
25 -
v.g 2+ -
»
o
<
=
150 -
1+ -
05 B
old | | i Sk ]
0 5 10 15 20 25 30 35 40 45 50

& (MeV)
Figure (2-c). The same as Figure (2-b) for configuration (2,2).
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N
T

Wi(p,h,n,E) sec’

ol I | | 1 1 T Ot
0 5 10 15 20 25 30 35 40

& (MeV)

Figure (2-d). The same as Figure (2-b) for configuration (3,2).

x10%

simpe non-ESM (3,2) with 5 terms
C  simpe non-ESM (3,2) with 10 terms
non-ESM with Pauli (3,2) with 5 terms
% non-ESM with Pauli (3,2) with 10 terms
—=—~Ericson (3,2)
0O williams (3,2)

45 50

05

olgft | | | | L L

ESM Ericson
O ESM Williams

--------- non-ESM Simple, 1 term
+  non-ESM Pauli, 1 term

=+==non-ESM Simple, 2 terms [
®  non-ESM Pauli, 2 terms

""""" non-ESM Simple, 3 terms
¥ non-ESM Pauli, 3 terms

non-ESM Simple, 5 terms
+  non-ESM Pauli, 5 terms

—-—--non-ESM Simple, 10 terms []
& non-ESM Pauli, 10 terms

0 5 10 15 20 25 a0
= (MeV)

35

40 45 50

Figure (3). Comparison of the summation of emission rates from ESM and non-ESM systems with

various summation terms. Bounded conditions are used.
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10 T T T T T T T T T ]
1 ¢ @, Simple non-ESM
1| —%—3.2) Simple non-ESM
4 © 2,1) Ericson
4| —=—3,2) Ericson
i —(2,1,0,0) Ericson
—(3,2,0,0) Ericson
Wl N
'.'g |
1
iy
= 1024__ "
: z
=0
2 i
107 i
10% L L I L 1 ! ! ! !
0 5 10 15 20 25 30 35 40 45 50
€ (MeV)

Figure (4). Comparison of the emission rates from ESM and non-ESM systems for one-
component, with ESM for two-component for ®Mo. Bounded conditions are used.
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All ESM calculations indicated similar
behavior, although same (total) exciton
number is used (3 or 5 in this case), two-
component showed less values. This was
explained [20] due to the effects of sharing
the excitation energy among more types of
excitons, rather than numbers. Both non-
ESM and ESM curves with (2,1)
configuration contributed with higher
emission rates at low energies yet dropped
faster at higher energies, which will appear
as a contribution in the low-energy
evaporation (compound) region during
cross-section calculations.

Conclusions

Emission rates have been
numerically calculated for **Mo target
with (N,N) reaction at 50 MeV. Both ESM
and non-ESM simple formulae were used,
and many comparisons were made. The
final conclusions of this research are:
1. Earlier state density calculation did not
reveal the weakness of the simple non-
ESM formula when particle number is
zero. This is attributed to the effect of
Fermi energy on the state density
calculation, for when E>F, some
restrictions must be noted in the non-ESM
application. This was obvious in the case
of (p,h)=(1,1) configuration.
2. Both value and ratio between residual to
initial state densities of non-ESM system
are less than in the ESM. This may
indicate the importance of the present non-
ESM treatment in the exciton model
calculation, although it is still an
approximate one.
3. A general observation is seen that as the
exciton configuration  develops, the
emission rates peaks to higher values at
low energies and drop faster at higher
energies. This case becomes more evident
in the non-ESM system and it was
explained due to the more corrected
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energy-dependence of the s.p.l.d. of the
system.

4. The important remark found is that,
increasing the number of terms reduces
the emission rates, for the same
configuration when using the non-ESM
rather than the ESM state density
formulae.

5. Using 3 terms in the non-ESM might
suffice to give correct treatment, but
results indicated that changes continue to
occur for five terms and even for ten
terms,  although  with  decreasing
significance. Comparisons of accuracy
with run time strongly favor the five terms
calculation.
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