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Abstract Key  words 
In an earlier paper, the basic analytical formula for particle-hole 

nuclear state densities was derived for non-Equidistant Spacing 

Model (non-ESM) approach. In this paper, an extension of the 

former equation was made to include pairing. Also a suggestion was 

made to derive the exact formula for the particle-hole state densities 

that depends exactly on Fermi energy and nuclear binding energies. 

The results indicated that the effects of pairing reduce the state 

density values, with similar dependence in the ESM system but with 

less strength. The results of the suggested exact formula indicated 

some modification from earlier non-ESM approximate treatment, on 

the cost of more calculation time.   
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 جامعة بغداد –( قسم الفيزياء، كلية العلوم 2جامعة بغداد و ) –( وحدة تكنولوجيا المعلومات، كلية العلوم 1)

 

 الخلاصة 

فجوة -في بحث سابق، اشُتقتْ المعادلة التحليلية الأساسية المتعلقة بحساب كثافة الحالات النووية الخاصة بنظام جسيمة

. وفي هذا البحث جرت محاولة لتطوير المعالجة (non-ESM)استنادا على نموذج التباعد الحقيقي الغير متساوي 

يح طاقة الأزدواج. في البحث الحالي أيضا تم اقتراح طريقة خاصة باشتقاق المعادلة السابقة وذلك لكي تشمل تصح

الدقيقة لكثافة الحالات النووية والتي تأخذ بنظر الاعتبار الاعتماد المضبوط على طاقة فيرمي وطاقات الربط النووية.  

وبتصرف مماثل لنموذج التباعد المتساوي  بينت النتائج أن إضافة تأثير الازدواج يقلل من كثافة الحالات المحسوبة 

(ESM ولكن بشدة أقل. أشارت هذه النتائج إلى زيادة الدقة عن المعالجة السابقة، ولكن على حساب الوقت المستغرق ،)

 لإجراء الحسابات.   

 

Introduction 

Various nuclear reactions are 

classified and interpreted according to the 

reaction entrance and exit energy 

channels. The exciton model [1] 

illustrates the nuclear reaction mechanism 
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at intermediate energies, where 

continuum emission is observed. This 

fraction of nuclear emission has very 

important applications in nuclear reactors 

and it is described by the Preequilibrium 

Emission (PE).  In the exciton model, the 

intermediate stages are treated semi-

classically to explain the PE and predict 

the reaction spectra and cross-sections. A 

quantity needed for this model 

calculations is the particle-hole state 

density, ),( En . This quantity describes 

the population of the single-particle states 

per energy interval, thus provides a 

proper description of the nuclear states 

that contribute in PE process. 

Intermediate stages of nuclear reactions 

have also received a special interest since 

understanding these stages will reveal 

important information about the 

mechanism at which PE occurs. 

Theoretical interpretation of this emission  

is required to describe the structure of 

excited stages. The relation between state 

and well-known level density )(E is [2], 

),1(),()( EnE

n

 

 

It should be mentioned that the level 

density of the excited nucleus is the 

quantity that can be experimentally 

measured [3], although with difficulty. 

This quantity is determined either from 

analyzing neutron resonance spectra [4], 

or from -ray strength measurements [5].  

A proper literature and theoretical 

review about the derivation method was 

given earlier in Part I of this paper [6], 

thus the theoretical modification 

described below aims to extend the 

earlier work.  

  In this work, we first extend the former 

treatment to include modified pairing, 

and compare with modified Williams' 

formula. Also, the present results are 

compared with the exact quantum 

mechanical calculations for selected 

examples. Finally, a complete derivation 

of the state density formula that specifies 

the exact dependence of the state density 

on binding and Fermi energies is given.   

 

II. State Density for non-ESM System 

With Modified Williams’ Formula 

The uncorrected state density formula 

obtained in Part I [6] is given by, 
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where the special mathematical 

multiplication operator 
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 is defined by, 
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and C
p
 and C

h
 are coefficients of 

integrating the special functions P(k) and 

H(k) –see Part I [6]. These functions 

represent part of the state density 

integration. Modification of equation (3) 

to include Pauli effect was written as, 
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where ),,( EhpESMnon  is the state 

density, E is the excitation energy, go is 

the s.p.l.d. for ground state, Ap,h is Pauli 

blocking energy for system configuring 

of p particles and h holes, n is the exciton 

number (n=p+h), F is Fermi energy of 

the target nucleus 

Modified Williams' formula takes particle 

pairing into consideration.  Pairing can 

add considerable amount of correction to 

the state density calculation [7,8].  This 

effect is included in such a way that the 

excitation energy is corrected by more 

subtracting the amount of energy P() 

which accounts for paring as a function 

of the energy gap, .   
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The treatment was well described by 

Harangozo et al. and Avrigeanu et al. 

[9,10] in practical calculation and here 

only the basic formulae are listed.  The 

state density with modified Pauli 

blocking is (modified Williams' formula) 

[10],   
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where  

 
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4
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22 
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gP  

is the pairing energy. B is the binding 

energy of the emitted nucleon, Bp,h is a 

modified Pauli energy given as,  
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 and  are energy gaps of the nuclear 

levels for the ground and excited states, 

The relation between   and o is,  
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Ce is the condensation energy, and Ephase  

is pairing energy due to phase transition, 

it is defined as [7],  
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 Ce is given by,  
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nc in eq.(9 and 10) is the critical exciton 

number given as .792.0 oc gn   For 

full discussions about this treatment, see 

Refs.[9,10] for both ESM and non-ESM 

approaches.  

In the present paper, pairing 

modifications are added by inspection to 

formula (2), as done by Harangozo et al. 

[9].  This will result in the following -

corrected- formula, 
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which takes pairing effect into account.  

(x-xo) is the Heaviside step function. 

The results of comparing state density 

values from this formula and eq.(5) are 

shown in Figs.(1-3). The comparisons of 

these figures were made using data found 

from the code PLD [10].  

In Fig.(1) it is seen that the state 

density calculated from eq.(11) in the 

(1,1) configuration is always less than 

that found from eq.(5), and in the case of 

F=38 MeV, three  terms gave the only 

adequate results. However, as the exciton 

configuration develops the behavior of 

the state density in the case of F=38 MeV 

becomes much consistent with the 

reasonable behavior of state density, as 

seen from Figs.(2 and 3) for (2,1) and 

(3,2) exciton configurations. As a matter 

of fact, at these configurations even the 

number of summation terms tend to 

improve the state density behavior much 

more than in the previous results listed so 

far in the present paper. Figs.(2-a) and (3-

a) clearly show that increasing the 

number of terms only slightly changes 

the calculated state densities.  The state 

density ratio in these figures crosses the 

line corresponding to unity at energies 70 

MeV in the case (2,1) and 77 MeV in 

(3,2).  These correspond to the energy 

value ~ 2F. On the other hand, the 

maxima in both cases occurred at 
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energies ~ 40 MeV. These results 

indicate  that  as the excitation energies 

approach ~F, a maximum value occurs 

which means that states will gather 

mostly near such energy, i.e., more 

important distribution probabilities will 

occur.  Also, at excitation energies ~2F, 

the state densities found from both 

improved Williams formula and the 

formula for non-ESM are almost being 

equal in magnitude, and above such 

energy the ratio decreases in favor of 

Williams’.    

 

III. Comparisons with Exact 

Calculations 

In Fig.(4) we plot the results of the 

present treatment against the exact 

quantum-mechanical results for 1p-1h in 

the case of 
56

Fe and 2p-1h for 
54

Mn as 

reported by Herman and Reffo [11], 

where the exact results illustrated there 

are for state density calculation with 

pairing, compared to our results with no 

interaction assumed (thin lines) and with 

pairing (heavy lines). The calculations of 

Ref.[11] were described without using the 

approximations based on saddle-point 

and ESM, thus provide well-referenced 

data for comparison with the present 

results.  The specifications of including 

pairing effect are -taken from Table (1) of 

Ref.[11], units of MeV-  for 
56

Fe: 

=1.49, S=0.53, Ce=2.22 and for 
54

Mn: 

=2.6, S=-0.45, Ce=1.55.  

Comparison among these figures 

shows that our results are still higher 

~20% than the exact results made for the 

same system specifications, where  even 

in the range below 40 MeV of excitation 

energy the match was not achieved. This 

indicates that the results obtained by 

correcting the analytical expression by 

inspection may give good (but not exact) 

results of the state density calculations. 

This also strongly suggests that one 

should try to apply the general formula 

eq.(11) if more accurate results required.      

 

IV. Exact Inclusion of Fermi and 

Binding Energies  

When the limits of B and F are very 

large, the effect of the Heaviside step 

function will be neglected because the 

integrals in this case will extend from 

zero to infinity without any restrictions. 

The results discussed so far were 

obtained from adding some corrections to 

eq.(2) by inspection, that is to add these 

corrections to the energy term. There 

should be, however, a certain (and more 

accurate) change in the indices of 

summations used in the development of 

eqs.(2 and 11). This comes from the fact 

that the basic derivation of the original 

formula, eq.(2), was based on specified 

method that takes into account these 

indices. Below this is made as a 

suggestion for the present development of 

the state density calculation using the 

non-ESM approach. The exact inclusion 

of the effects of Fermi and binding 

energies is determined as in Ref.[6], 

which takes into account the reasonable 

limitations that u not to exceed F (in the 

case of holes) and B(in the case of 

particles). Then, using this exact 

definition, the functions P(k) and H(k) 

can be found equal to -compare to eqs.(16 

and 17) of [2], 
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which leads to the following,  
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where the integral I is defined as, 
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Then, our solution is,  
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and the ̂  operator in this case is, 
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Eq.(17) represents the exact state 

density formula for non-ESM 

dependence on B and F.   

The above set of equations, eq.s(17, 18), 

clearly indicate how complicated 

formula one will find if the exact 

dependence was needed. Beside the 

need for numerical calculations of 

eq.(17), further inclusion of Pauli 

blocking and pairing terms should also 

be made. These tasks are left for further 

investigation.   
 

V. Conclusions  

In conclusion, it is seen that pairing 

correction adds an important 

modification to state density values in 

the non-ESM system. Comparisons with 

the standard treatment showed that the 

present non-ESM formula for state 

density calculation corresponds to the 

best results. The comparison with exact 

calculations for (1p-1h) and (2p-1h) 

configurations showed that the present 

results may give better state density 

values when including pairing effect. A 

comparison with exact quantum 

mechanical treatment showed that the 

present formula still ~ 20% higher, thus 

a conclusion is made that more 

corrections are still needed.    

The inclusion of exact effects of binding 

and Fermi energies for particles and 
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holes, respectively on the state density 

calculation made it clear that the state 

density formula will have a highly 

complicated form. This indicates that 

the problem of non-ESM can actually be 

solved to give better description of the 

system, but on the price of more 

calculation time and efforts. 
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Fig.(1-a)  

b:  (p,h)=(1,1), F=100 MeV

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

Energy, MeV

R
a

ti
o

3 terms  

30 terms 

 
Fig.(1-b) 

Fig.(1): The ratio between the results of 

eq.(11) and Williams’ formula with 

improved pairing effect, eq.(5) for 

configuration (1,1). The drop at energies 

less than ~10MeV is due to the effect of 

the Heaviside function. 
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Fig.(2-a) 

b:  (p,h)=(2,1), F=100 MeV
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Fig.(2-b) 

Fig.(2): The same as Fig.(1) for 

configuration (2,1). 
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Fig.(3-a) 

b:  (p,h)=(3,2), F=100 MeV
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Fig.(3-b) 

Fig.(3): The same as Fig.(1) for 

configuration (3,2). 
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Fig. (4-a): State density for 1p-1h of 
56

Fe as calculated according to eq.(11) 

for 50 terms of summation for non-

interacting system (thin line) and for a 

system which includes pairing (thick 

line), compared with the exact results of 

Ref.[11] (histogram). 
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Fig.(4-b) 

Fig. (4-b): The same as Fig.(4-a) for 2p-

1h of 
54

Mn. 


