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Abstract Key words

In an earlier paper, the basic analytical formula for particle-hole Level Density, Single-
nuclear state densities was derived for non-Equidistant Spacing Particle Level ensity,
Model (non-ESM) approach. In this paper, an extension of the Statistical Compound
former equation was made to include pairing. Also a suggestion was Nucleus Reactions.
made to derive the exact formula for the particle-hole state densities

that depends exactly on Fermi energy and nuclear binding energies.

The results indicated that the effects of pairing reduce the state

density values, with similar dependence in the ESM system but with

less strength. The results of the suggested exact formula indicated = Article info

some modification from earlier non-ESM approximate treatment, on  Received: Feb. 2010

; ; Accepted: Dec.. 2010
the cost of more calculation time. A
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Introduction reaction entrance and exit energy
Various  nuclear  reactions are channels. The exciton model [1]
classified and interpreted according to the illustrates the nuclear reaction mechanism
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at  intermediate  energies,  where
continuum emission is observed. This
fraction of nuclear emission has very
important applications in nuclear reactors
and it is described by the Preequilibrium
Emission (PE). In the exciton model, the
intermediate stages are treated semi-
classically to explain the PE and predict
the reaction spectra and cross-sections. A
quantity needed for this model
calculations is the particle-hole state
density, w(n,E). This quantity describes
the population of the single-particle states
per energy interval, thus provides a
proper description of the nuclear states
that contribute in PE  process.
Intermediate stages of nuclear reactions
have also received a special interest since
understanding these stages will reveal
important  information  about  the
mechanism at which PE  occurs.
Theoretical interpretation of this emission
is required to describe the structure of
excited stages. The relation between state
and well-known level density o(E) is [2],

p(E)=Y w(nE) @,

It should be mentioned that the level
density of the excited nucleus is the
quantity that can be experimentally
measured [3], although with difficulty.
This quantity is determined either from
analyzing neutron resonance spectra [4],
or from y-ray strength measurements [5].

A proper literature and theoretical
review about the derivation method was
given earlier in Part | of this paper [6],

thus the theoretical modification
described below aims to extend the
earlier work.

In this work, we first extend the former
treatment to include modified pairing,
and compare with modified Williams'
formula. Also, the present results are
compared with the exact quantum
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mechanical calculations for selected
examples. Finally, a complete derivation
of the state density formula that specifies
the exact dependence of the state density
on binding and Fermi energies is given.

I1. State Density for non-ESM System
With Modified Williams’ Formula

The uncorrected state density formula
obtained in Part | [6] is given by,

n

Jo
2"z 2 pipe EN-(N - 1))
(2),

EN—l

[1Dh

w(p,h,E) =

where  the  special  mathematical
multiplication operator Z is defined by,

o0 p h
== > [lciIlc, 3,
ayay,.ay, j=1 A=1
bl,bz,..bh:O
and CP and C" are coefficients of
integrating the special functions P(k) and
H(k) —see Part | [6]. These functions
represent part of the state density
integration. Modification of equation (3)
to include Pauli effect was written as,

a)non—ESM (p, h, E) —

g (E—A(p, )"
2"z"2 ptht - FNTY(N =1)!

[1D

(4),

where " "M (p,h,E) is the state

density, E is the excitation energy, g, is
the s.p.l.d. for ground state, A, is Pauli
blocking energy for system configuring
of p particles and h holes, n is the exciton
number (n=p+h), F is Fermi energy of
the target nucleus

Modified Williams' formula takes particle

pairing into consideration. Pairing can
add considerable amount of correction to
the state density calculation [7,8]. This
effect is included in such a way that the
excitation energy is corrected by more
subtracting the amount of energy P(A)
which accounts for paring as a function
of the energy gap, A.
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The treatment was well described by
Harangozo et al. and Avrigeanu et al.
[9,10] in practical calculation and here
only the basic formulae are listed. The
state density with modified Pauli
blocking is (modified Williams' formula)
[10],

g"(E-P(A)-B,

o™ (n,E,P) =
p'hl (n-1)!
x  O(E-P(A)-Bphp) (),
where
(& - )
P(A) =g (6),

4
is the pairing energy. B is the binding
energy of the emitted nucleon, By is a
modified Pauli energy given as,

2
2gA
Bp,h = Aph 1+(QTJ ™).

A and A are energy gaps of the nuclear
levels for the ground and excited states,
The relation between A and A, is,

A 1.60
2 _0.99% —1.76(“J «
A

0 Ne
-0.68
E
Ce

if E>Ephase  (8)

if E< Ephase

Ce is the condensation energy, and Epnase
is pairing energy due to phase transition,
it is defined as [7],

E phase =
N 2.17 n
Ce 0.716+2.44(j if —>0.446 ; (9),
Ne Ne
Ephase= 0 otherwise
Ceis given by,
2
A
Ce=0 70 20),

ne in eq.(9 and 10) is the critical exciton
number given as n, =0.792 gA,. For
full discussions about this treatment, see
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Refs.[9,10] for both ESM and non-ESM
approaches.

In the present paper, pairing
modifications are added by inspection to
formula (2), as done by Harangozo et al.
[9]. This will result in the following -
corrected- formula,

a)nonfESM (p, h, E) —

9o &(E—P(A)—Bp,h)N_l
MM 2 i NS )
x©(E~P(A) =By ) 1),

which takes pairing effect into account.
O(x-Xo,) Is the Heaviside step function.
The results of comparing state density
values from this formula and eq.(5) are
shown in Figs.(1-3). The comparisons of
these figures were made using data found
from the code PLD [10].

In Fig.(1) it is seen that the state
density calculated from eq.(11) in the
(1,1) configuration is always less than
that found from eq.(5), and in the case of
F=38 MeV, three terms gave the only
adequate results. However, as the exciton
configuration develops the behavior of
the state density in the case of F=38 MeV
becomes much consistent with the
reasonable behavior of state density, as
seen from Figs.(2 and 3) for (2,1) and
(3,2) exciton configurations. As a matter
of fact, at these configurations even the
number of summation terms tend to
improve the state density behavior much
more than in the previous results listed so
far in the present paper. Figs.(2-a) and (3-
a) clearly show that increasing the
number of terms only slightly changes
the calculated state densities. The state
density ratio in these figures crosses the
line corresponding to unity at energies 70
MeV in the case (2,1) and 77 MeV in
(3,2). These correspond to the energy
value ~ 2F. On the other hand, the
maxima in both cases occurred at
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energies ~ 40 MeV. These results
indicate that as the excitation energies
approach ~F, a maximum value occurs
which means that states will gather
mostly near such energy, i.e., more
important distribution probabilities will
occur. Also, at excitation energies ~2F,
the state densities found from both
improved Williams formula and the
formula for non-ESM are almost being
equal in magnitude, and above such
energy the ratio decreases in favor of
Williams’.

I1l.  Comparisons __ with __ Exact
Calculations

In Fig.(4) we plot the results of the
present treatment against the exact
quantum-mechanical results for 1p-1h in
the case of *°Fe and 2p-1h for >*Mn as
reported by Herman and Reffo [11],
where the exact results illustrated there
are for state density calculation with
pairing, compared to our results with no
interaction assumed (thin lines) and with
pairing (heavy lines). The calculations of
Ref.[11] were described without using the
approximations based on saddle-point
and ESM, thus provide well-referenced
data for comparison with the present
results. The specifications of including
pairing effect are -taken from Table (1) of
Ref.[11], units of MeV-  for *°Fe:
A,=1.49, $=0.53, C,=2.22 and for **Mn:
A,=2.6, S=-0.45, C,=1.55.

Comparison among these figures
shows that our results are still higher
~20% than the exact results made for the
same system specifications, where even
in the range below 40 MeV of excitation
energy the match was not achieved. This
indicates that the results obtained by
correcting the analytical expression by
inspection may give good (but not exact)
results of the state density calculations.
This also strongly suggests that one
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should try to apply the general formula
eg.(11) if more accurate results required.

IV. Exact Inclusion of Fermi and
Binding Energies

When the limits of B and F are very
large, the effect of the Heaviside step
function will be neglected because the
integrals in this case will extend from
zero to infinity without any restrictions.
The results discussed so far were
obtained from adding some corrections to
eq.(2) by inspection, that is to add these
corrections to the energy term. There
should be, however, a certain (and more
accurate) change in the indices of
summations used in the development of
eqs.(2 and 11). This comes from the fact
that the basic derivation of the original
formula, eq.(2), was based on specified
method that takes into account these
indices. Below this is made as a
suggestion for the present development of
the state density calculation using the
non-ESM approach. The exact inclusion
of the effects of Fermi and binding
energies is determined as in Ref.[6],
which takes into account the reasonable
limitations that u not to exceed F (in the
case of holes) and B(in the case of
particles). Then, using this exact
definition, the functions P(k) and H(k)
can be found equal to -compare to egs.(16
and 17) of [2],

o cP

P(k) = __—m___
( ) gomzzlo Fm(ik)m+1

{1 exp(— |kB)z ('kSB) j (12),

s=0
H(k)=90 . -

m=0 = m (Ik)m+l

m H S
x[l—exp(—ikF)z ('kSF!) ] 13),

s=0

which leads to the following,
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0 al 3.2
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b,

al_O a2_0 ap Osl_O 52_0 sp_O bl_O b,=0 bh Oql_O q2_0 qh_OJ =1

B(51+52+_.+5p)g F(q1+q2+...+qh) r—(by+by+.bp)—(8+85+.-2p)

fleb s 2o ()

(=0 r=0

[f[l (s ,—)!ﬂf{l @, )!}r

(16).

14),
where the integral | is defined as, p h
B ) N =n+>(a —Esl.)JrZ(bﬂb ~r4q,)
lzj exp(uk(E_—r'::—zB)) dk 15), = i
0 (ik)
Then, our solution is,
and N in this case is,
P53 (razby- >
n (25 rq,-91 j e N-1
C()(p,h, E)= gO =B j=1 Fﬂ =1 j=1 (E rF - EB) (17)'
p'h! (N=-D!
and the = operator in this case is,
. 0 [ee) ') al a a e o) 0 bl b2 bh
=D 3D WD B S D I 3D JNED YD S D
a1:0a2:0 ap:051:0 s5=0 sp:0b1:0b2:0 b,=0 q1:0q2:0 qh:O
cer( PN
Y
Cq [1Cn, > > 7 - (18).
j= A=1 =0 r=0 h
[H (Sj)!j| [H (qﬂ)!}
' A=1
Eq.(17) represents the exact state the non-ESM system. Comparisons with
density  formula  for  non-ESM the standard treatment showed that the

dependence on B and F.

The above set of equations, eq.s(17, 18),
clearly indicate how complicated
formula one will find if the exact
dependence was needed. Beside the
need for numerical calculations of
eq.(17), further inclusion of Pauli
blocking and pairing terms should also
be made. These tasks are left for further
investigation.

V. Conclusions

In conclusion, it is seen that pairing
correction adds an important
modification to state density values in

present non-ESM formula for state
density calculation corresponds to the
best results. The comparison with exact
calculations for (1p-1h) and (2p-1h)
configurations showed that the present
results may give better state density
values when including pairing effect. A
comparison  with  exact quantum
mechanical treatment showed that the
present formula still ~ 20% higher, thus
a conclusion is made that more
corrections are still needed.

The inclusion of exact effects of binding
and Fermi energies for particles and



Iragi Journal of Physics, 2011

holes, respectively on the state density
calculation made it clear that the state
density formula will have a highly
complicated form. This indicates that
the problem of non-ESM can actually be
solved to give better description of the
system, but on the price of more
calculation time and efforts.
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Fig.(1): The ratio between the results of
eq.(11) and Williams’ formula with
improved pairing effect, eq.(5) for
configuration (1,1). The drop at energies
less than ~10MeV is due to the effect of
the Heaviside function.
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configuration (2,1).
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Fig.(3): The same as Fig.(1) for
configuration (3,2).
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Fig. (4-a): State density for 1p-1h of
*°Fe as calculated according to eq.(11)
for 50 terms of summation for non-
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system which includes pairing (thick
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Fig. (4-b): The same as Fig.(4-a) for 2p-
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