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Abstract

Polycaprolactone polymer is widely used in medical applications
due to its biocompatibility. Electro spinning was used to create poly
(e- caprolactone) (PCL) nanocomposite fiber mats containing
hydroxyapatite (HA) at concentrations ranging from 0.05 to 0.4% wt.
The chemical properties of the fabricated bio composite fibers were
evaluated using FTIR and morphologically using field-emission
scanning-electron microscopy (FESEM), Porosity, contact angle, as
well as mechanical testing(Young Modulus and Tensile strength) of
the nanofibers were also studied. The FTIR results showed that all the
bonds appeared for the pure PCL fiber and the PCL/HA nano fibers.
The FESEM nano fiber showed that the fiber diameter increased from
54.13 to 155.79 (nm) at the HA values from (0.05 % and 1%wt.).
Porosity, wettability of (PCL/HA) composites has improved, and the
contact angle has decreased from 103.59° to 85.57° for fibrous
scaffolds. The inclusion of hydroxyapatite increased the tensile
strength of nano fiber scaffolds, and the maximum tensile strength of
0.4% percent was about 0.127 MPa, with a lowering in elongation to
40%.

1. Introduction
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The development of nanotechnology in the last 20 years has focused a lot of interest

on the electro-spinning process. This technique is used to create polymer nano- and
microfibers and is very important in the bio-medical sector because of its low cost,
scalability, flexibility, and simplicity [1]. The four basic components of an electro-
spinning apparatus are shown in Fig. 1. A high-powered source, a hydrodynamic syringe
a solution-filled syringe needle, a fiber deposition collector, and a high voltage power
supply. An electric field is created between the collector and the needle when the positive
electrode of the power supply is connected to the needle and the negative electrode is
connected to the collector [2].

The creation of a Taylor cone occurs when the repulsive charge overcomes surface
tension. This causes the polymer solution to flow to the negative electrode, which acts as
a collector, enabling fibers to form.
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Figure 1: Electrospinning system with a rotating collector.

The polymer solution evaporates, and the dry fibers of the polymer solution are
deposited on the collector in diameters ranging between nanometers and micrometers [3].
A number of factors control the electro-spinning process such as molecular weight,
viscosity, solvents, surface tension, and conductivity/surface charge density. However,
processing parameters such as voltage, collector/needle distance, flow rate, and syringe
diameter, as well as environmental conditions such as temperature and humidity, play an
important role in the production of nanofibers for electro-spinning [4, 5].

Polycaprolactone (PCL) is a synthetic polymer that is extensively used in the
medical field, due to its biodegradation and biocompatible [6] and low melting point
temperature of (55— 60 ) °C; PCL may be simply molded into the required scaffold design
using various fabrication processes [7]. However, because PCL is hydrophobic, it lacks
wettability and cell attachment when compared to hydrophilic materials. Its
characteristics such as (bio-compatibility and delayed bio-degradation) and the quality of
micro fiber structure created by electro-spinning could lead to a promising material for a
range of applications, including medical [8]. For medical applications, PCL fiber must be
nanofiber; this is crucial since fiber diameters must closely resemble natural extracellular
forms in order to enable cell growth [9, 10].

Hydroxyapatite (HA) whose formula is a [Caio (PO4)s(OH) 2] is one of the most
vital materials for attraction due to its chemical similarity with the mineral part of the
hard tissue bone is made up of two major components [11, 12]. Because of its
biocompatibility, bio-activity, non-toxicity, osteoconductivity, and anti-inflammatory
properties, HA has a wide range of biological uses and is osteoconductive, chemically,
and thermally stable. However, due to its strong inclination to fracture as a ceramic, it has
a weak tensile strength [13].

Mochane et al. [14] gave a mini-review on electron spun Polycaprolactone (PCL),
one of the most often utilized synthetic polymers in medical applications due to its
biocompatibility and delayed biodegradation. Combining the essential characteristics of
the PCL matrix with the characteristics of nanofibers particles produces intriguing
materials that might be used in a variety of applications, including biological ones.
Nanofibrous structures have a huge surface area, a tiny diameter of pores, and a high
porosity, all of which make them appealing for a variety of applications. For the creation
of nano - and micro-sized fibers, electro spinning has been widely employed as a process.
The many methods for electrospinning PCL and its composites to advanced applications
are covered in this review. The steady-state conditions, as well as the influence of the
membrane separation parameters on the electrospun fiber's shape, are also discussed.

Hassan and Sultana [15] electrospun bioactive nano-hydroxyapatite (nHA) into an
electrospun Polycaprolactone (PCL) membrane to increase osteoconductivity or bone-
bonding capabilities. The viscosity of PCL and nHA/PCL with various concentrations of
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nHA, as well as the shape of the electrospun membranes, was evaluated using field
emission scanning electron microscopy. The water contact angle of the nanofiber has
been used to evaluate the wettability of membranes at various concentrations. Using
atomic force microscopy, the surface roughness of electrospun nanofibers generated from
pure PCL and nHA/PCL was measured and compared. The total reflectance has
decreased. Using Fourier transform infrared spectroscopy, the chemical bonding of the
composite electrospun nanofibers was examined. Beadle's nanofibers arose from the
incorporation of nHA with a diameter of 200 - 700 nm. The fiber diameter and surface
roughness of electrospun nanofibers were dramatically enhanced with the addition of
nHA, according to the results. The water contact angle (132 +3.5) for the PCL membrane
was reduced after the addition of 10% (w/ w) nHA (112 + 3.0). PCL membrane and 10%
(w/w) nHA/PCL membrane ultimate tensile strengths were 25.02 2.3 and 18.5 4.4 MPa.

The major aims of this study were to create and characterize of PCL/HA
nanofibrous scaffold for multifunctional wound dressing applications.

2. Experimental work

2.1. Materials and Methods

Sigma-Aldrich supplied PCL with molecular weights ranging from (70,000 to
90,000). The solvent was chloroform purchased from Aldrich (U.S.A.).

2.2. Preparation of samples

PCL was dissolved in chloroform solvent to prepare pure PCL at 55°C. PCL/HA
was prepared at concentrations of (0.05, 0.1, 0.2, and 0.4 %) the solution at 60°C for 3
hours until it becomes viscous. To synthesize the fibrous scaffold electro-spinning
method by the prepared solution was pulled into a 10mL syringe with blunt-end needles
of 18 and 22G. The needle tip's- aluminum collector distance was set at 10 cm. The needle
was subjected to a high voltage of 16-20 kV. The solution was expelled using an infusion
pump at a rate of (5mL/h). The resultant fiber was dried overnight to reduce any solvent
remaining on its surface.

Figure 2: The Sample of composites.

2.3 Characterization

2.3.1. FTIR

Fourier transformed infrared (FTIR) spectrum analysis was performed using a
resolution of 4cm™ in the range 4000-400 cm™.
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2.3.2. FESEM

A field emission scanning electron microscope (FESEM) was used to study the
shape of the nanofibrous scaffold and to scan the surface roughness at an operating
voltage of (20-30) kV.

2.3.3. Porosity

The porosity of the produced nanofibers was evaluated by immersing them in 100%
ethanol until they were saturated and weighing them before and after. Porosity was
determined using the following equation (1) for the ASTM C-20 [16]:

_W-w;

—_— - 0,
P - x 100% (1)

where Wy and W> are the weights of the samples (scaffolds) before and after immersion
in alcohol, respectively, V1 is the volume of alcohol before immersion in alcohol, and pis
the alcohol density.

2.3.4. Water contact angle

The wettability of the membrane was evaluated using a contact angle instrument by
dropping deionized water onto the membrane and measuring the contact angle five times
at different positions on the membrane, with the average value derived for the ASTM -
D5946 standard [17].

2.3.5. Tensile Strength
Mechanical characteristics of PCL and PCL/HA nanofiber composites were
evaluated with an Instron Mechanical Tester with a 10 N load cell and a cross-head speed
of 1 mm/min. Rectangular specimens were with (5x9x30mm) dimensions with load cell
at a cross-head speed of 10 mm/min for the ASTM D- 882 [18]. Hooke law governs the
relationship between stress and tensile strain.
Stress (o) is defined “’as the measurement of the total average forces (F) per unit area
of a surface (A) “shown by the relation;
c=F/A (2)
Strain (&) “is the proportion of total deformation to the original dimension of the material
body to which forces are applied.” which does the relation express:
e = (L-L°)/L° 3)
Where: L, Lo are the original (initial) length and the length after applying the force,
respectively.
Young’s modulus is a variant of Hooke's law of elasticity, as illustrated by the following

relationship.
E = ¢ /g=stress/ strain 4)

where E is (Young's Modulus) which is a measure of stiffness.
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3. Results and Discussion

3.1. Fourier Transmission Infra-Red Spectroscopy (FTIR)

Fig. 3 shows the FTIR spectrum of the pure PCL nanofiber which exhibits the
characteristic peaks for pure PCL, at approximately 2940 cm™ indicating the bonds of
CH; for asymmetric stretching, 2865 cm™ for the bonds of CH: for symmetric
stretching, 1733 cm™ bonds for carbonyls bond stretching, 1127cm-1 bonds of C—-O and,
C—C stretching in the amorphous phase 1164 cm™ for carbon-oxygen bond stretching and
at 1242 cm™,
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Figure 3: FTIR spectrum of PCL fiber.
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Figure 4: FTIR spectrum of PCL/HA fiber.

The FTIR spectrum of PCL/HA nanofibers is shown in Fig.4. It shows the peaks at
2923cm™ for the bonds of asymmetric CH; stretching, the bond of 2884 cm™* symmetric
CHz stretching, 1720cm™ for bonds of carbonyl stretching, and 1290cm™  for bonds of
C-0, and C-C stretching in the crystalline phase. PO4-3 absorption bands attributed to
HA particles can be found in each of the HA and PCL/HA scaffolds, and at 499 and 1000
cm?, these PO4- bands can be seen.
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3.2. Field Emission Scanning Electron Microscopy (FESEM)

FESEM analysis was used to analyze the morphologies of the generated fiber. The
pure PCL fiber exhibited smooth surfaces and a consistent fiber diameter distribution, as
shown in Fig.5, with an average fiber diameter of around 52nm at different magnifications
(1pum, 5um, 200nm, and 500nm).

Figure 5: FESEM of pure fiber PCL at different magnifications
a) 1um, b) 5um, ¢) 200nm, and d) 500nm.

The morphology and nanofiber diameter distributions for PCL/HA at (0.1 and 0.4%)
are presented in Fig.5. The fibers were in wet form when reaching the collector during
the electro-spinning process. According to Fig (6 and 7), the average fiber diameter
increased with increasing the concentration of the polymer solution. At concentrations of
0.05%, and 0.4%, PCL/HA-based nanofibers diameters were 54.13 nm, and 155.79 nm,
respectively. The smoothness of the surface can be attributed to the single phase of HA
implanted through PCL fibers.
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Figure 6: FESEM of PCL /HA 1/ 0.1 at different magnifications
A) 1um, b) 5um, ¢) 200nm, and d) 500nm.
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Figure 7: FESEM of PCL /HA 1/ 0.4 at different magnifications
A) 1um, b) 5um, ¢) 200nm, and d) 500nm.

20




Iraqi Journal of Physics, 2022 Ali H. Mohsen and Nadia A. Ali

3.3. Porosity

The porosity of the nanofiber composites revealed that the porosity was high enough
(>65%) in all produced nanofibres to be acceptable for wound dressing applications [19].
Table (1) shows that increasing the concentration of HA increased the porosity of PCL.

Table 1: Porosity of PCL/HA composites.

Sample porosity%

PCL 324
PCL/HA 1/0.05 515
PCL/HA 1/0.1 58.2
PCL/HA 1/0.2 71.3
PCL/HA 1/0.4 78.7

When HA (with different concentrations) was added to the PCL sample, the porosity
rose (between 51.5 and 78.7 %). The scaffolds' high porosity is advantageous as a wound
dressing. Its function is not only for promoting hydration and preventing infection, but
also for the transfer of nutrients and oxygen exchange [20].

3.4. Hydrophobicity and Contact Angle

From Table 2, it can benoticed that the PCL surface has a high value of contact
angle around 103.59° indicating the hydrophobic nature of the surface. As the HA content
was increased from 0.05 to 0.4 percent, the wettability of PCL/HA composites improved
and the contact angle falls from 91.91° to 85.57° respectively. A suitable wound dressing
should be hydrophilic in order to absorb wound exudates while also keeping the wound
bed wet. The hydrophobicity of the produced dressing was assessed using water contact
angles, and the findings revealed that adding HA to PCL nanofibres decreased water
contact angles. The chemical structure of HA and the nature of the hydrophilic OH group
is responsible for the decreased water contact angle in PCL/HA nanofibers, in addition to
the fact that hydroxyapatite is a hydrophilic material with a contact angle of about 10°
[21].
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Table 2: Contact angles of PCL/HA composites.

Sample Contact Contact Average Picture
angle left° angle right

PCL 101.79 105.45 103.59

PCL/HA 91.89 91.93 91.91
1/0.05

PCL/HA 90.09 90.36 90.22
1/0.1

PCL/HA 90.45 89.97 90.21
1/0.2

PCL/HA 85.45 85.69 85.57
1/0.4

3.5. Tensile strength

The mechanical characteristics of the dressing which is the most important
component, influence its application because the tensile strength and flexibility of the
dressing should be able to resist handling and replacement during the wound healing
period. The ability of the nanofibrous scaffolds to be sustained under different applied
stresses might introduce a high accurate evaluation of the fibers to be used or not clinical
applications.

Fig.8 shows the ultimate tensile strength and Young’s modulus of the electrospunned
PCL and PCL/HA nanofibers calculated from the typical stress-strain curve. Young’s
modulus was calculated by Equation (4) which corresponds to tensile strength, Young's
modulus increased from (0.0035 MPa to 0.1276 MPa), (2.01 MPa to 3.2 MPa), whereas
elongation reduced from 155 % for the PCL specimens to 40 % as the HA content was
increased from (0.05 wt. % to 0.4 wt. %). Mechanical properties, in general, can be altered
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depending on composition. The tensile mechanical characteristics were also affected by
porosity and fiber diameter. Both the modulus and ultimate tensile strength of electrospun
PCL fibers in addition to the fiber distribution, and the good alignment improved the
mechanical properties of the fiber. Thus, the FESEM micrographs exhibited higher
tensile mechanical values and this agrees with the results of Johari et al. [22].
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Figure 8: the mechanical properties of pure PCL and (0.05-0.4%) (PCL/HA)
composite: a) The Tensile strength, (b) Elongation, and (c) Young modulus.

4. Conclusions

The results have shown that; the fiber diameter of PCL/HA, nanofibrous composites
increased as the HA, concentration was increased, from 54.13 for PCL to 155.79 nm with
0.4% HA concentration (as revealed by the FESEM results), porosity increased from
(51.5-78.7) %, wettability of PCL/HA, composites have improved and the contact angle
decreases from 103.59° to 85.57°. The decrease of the contact angles may be attributed
to the increase in porosity. The tensile strength of PCL/HA nanofibrous scaffolds was
improved with the addition of hydroxyapatite and the maximum tensile strength at 0.4%
HA was around 0.127 MPa while elongation decreased to 40% and Young modulus
increased to 3.2 MPa.
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