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Abstract Key words

The study of nuclear structure of neutron-rich nuclei acquired Skyrme interaction,
impressive interest internationally considering that it predicts nuclear Skyrme-Hartree-Fock
behavior and reveals new aspects of nuclear structure that are the key method, Si isotopes,
challenges of developing a generalized nuclear model. In the present Neutron rich nuclei.
work, the nuclear structure of %°Sij isotopes toward neutron dripline
was investigated in the framework of shell model with Skyrme-
Hrtree-Fock method wusing certain  Skyrme parameterizations.
Moreover, investigations of static properties such as nuclear densities
for proton, neutron, mass, and, charge densities with their Article info.
corresponding rms radii, neutron skin thicknesses, binding energies, Received: Oct. 2020
separation energies, shell gap, and pairing gap were performed using Accepted: Feb. 2021
the most recent Skyrme parameterization. For all dynamic properties, Published: Mar. 2021
sdpf shell model space has been used to generate one body transition
density matrix element with SDPFK two body effective interaction.
The calculations also reproduced the low and higher-laying 2* energy
level scheme, and reduced transition probability B(E2) for even Si-
isotopes. The calculated results were compared with available
experimental data, to identify which of these parameterizations
introduced equivalent results with the experimental data and
reasonable agreement was obtained.
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Introduction

The study of nuclear structure of neutron-rich nuclei acquired impressive interest
internationally for both experimental and theoretical sides. This is because it predicts
nuclear behavior and reveals new aspects of nuclear structure that are the key
challenges of developing a generalized nuclear model. These nuclei can be described
as excitation modes that have distinctive structure over the structure or shape of the
nuclear ground state. Moreover, the infrastructure of our earlier understanding of
nuclei comes from shell structure and excitation modes. Extrapolation of the region
near the dripline provides knowledge about modified features of nuclei such as magic
number, shell gap and pairing gap. The theoretical estimation of the ground-state
properties of nuclei near the neutron dripline is typically made in the framework of
mean-field approaches; for instance, Hartree-Fock (HF) approximation. The Skyrme -
Hartree- Fock (SHF) model is considered a powerful tool to describe the nuclear
ground state. Furthermore, the inclusion of the parameterizations of Skyrme
interaction provides an excellent description for nuclei up toward the vicinity of
stability [1, 2].

The various nuclear density distributions with their corresponding root-mean-
square (rms) radii and the neutron-skin provide essential information on nuclear
structure. Furthermore, to extrapolate the properties of nuclei we should describe their
shell structure with full information regarding binding energy and nuclear pairing, in
addition to their separation energy, pairing energies and shell gap [3, 4].

Several studies have been performed to investigate the static and dynamic
properties of Si isotopes. The excitation energies, B(E2), and Sy, for neutron-rich Si
from N=22 to N=28 isotopic chain was investigated by Utsuno et al. [5]. The level
scheme and B(E2) of *°Si have been studied by Liang et al. [6] using SDPF-NR
interaction. The comparison between excitation energies and B(E2) was identified by
Ibbotson et al. for ¥**%% sj-isotopes [7]. Energies of low lying, B(E2), Szn, and S
have been studied by Cottle and Kemper in order to identify the subshell closure in
N=20 and N=28 by examining Sy, [8]. Excited states for Si neutron-rich nuclei have
been studied using sd shell model as well as the binding energies by Cole et al. [9].
Caurier et al. identified the low-lying states and B(E2) for *Si has been identified
using SDPF-U interaction and comparison with experimental data showed excellent
agreement [10].

The present work is divided into three sections, the first section displays charge,
neutron, proton density, and root mean square radii of 2**°Si isotopes toward neutron
dripline in framework of shell model with Skx25 Skyrme parameterizations. The
second section is deployed to calculate the binding energies and nuclear pairing of *
95j isotopes. Third part is deploy to exhibit energy levels and reduced transition
probability for low and higher-lying 2* states in even-even 2*°Sj isotopes up toward
neutron dripline. The calculations were performed with sdpf shell model space and
SDPFK two-body effective interaction and it will be compared with the available
experimental data.

Theoretical framework

The Skyrme effective interaction was developed from the postulation that the
energy functional could be expressed in terms of a zero-range expansion, leading to a
simple derivation of the HF equations. The two-body terms are written as a short-
range expansion in the form [11-14].
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where 6, =d(T; —T,) and k, k' are the relative momentum operators with k acting on
the right, while k' is the operator acting on the left and are given by:

R NN O

k :_E(Vl_vz)’ k:E(Vl_vz)v (2)
also, I56 is the spin-exchange operator that are given as:

B = (1+6,-5,) ®

where & are the Pauli spin matrices. The Skyrme parameterizations; xn, ty, to, te, o and
W, are the free parameters, that are must be fitted to nuclear structure experimental
data. Each term creates both time-even and time-odd densities in the HF equations
[15].

The overall many-body Hamiltonian is written in term of kinetic energy and
nucleon-nucleon interaction.

_leq _V2+ Zl:l:]v(ilj) (4)

According to SHF approximation, the total binding energy of the system is given
by the sum of Coulomb energy, kinetic energy and Skyrme energy, which describe
the effective interaction between nucleons

E = Ecow + Egin + fESkydgr + Epair (5)
By substituting the Skyrme interaction terms into the full energy expression,
the total energy of the system can be written as [14]:

(Pyr|H|®Pyp) = ZJ‘P (rOViigi(r)dry
A
Z ff d*r d*r,¢;(ry, 04, q1)P;j(r2,02,q2) v(ry,12)
ijo1029192
(1 - ﬁMﬁaﬁq)¢i(r1r 01, ‘h)‘.bj(rz; 02,4q2) (6)

The densities p(r) in spherical representation are given by:
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2jg+1 (Rg\2
Pq(r) = Tngigt, 0p o (<L), (7)

r
R . .
where (TB) represent redial part, g represents one of the following; neutron, proton

and charge, wg is the occupation probability of the state 5 and j; is the total angular
momentum of single particle (jz = lg + s), that vanishes for ground states.

The rms radii of neutron, proton, charge, and mass distributions can be evaluated
from these densities as [16, 17]:

2 1/2
rg = (rg?)"/% = ffr pizr(;;:r] (8)
A quantity providing information about the structure of the nuclei is the
neutron skin thickness t, which can then be defined as the difference between the
neutron rms radius and the proton rms radius [17]:

Aty = (12), "% = (r2), 1/ 9)

The separation energies are mainly expressed in terms of the difference in binding
energies then S denotes [18].

S, =—Q,=B(N,Z)-B(N-1,2) (10)

S2n =—Q2, =BWN,Z) —B(N -2,2) (11)
The shell gaps in nuclei are defined as the sum of the neutron and proton shell gaps
based on the difference of the binding energies [15].

A(N,Z) = An(N, Z) + Ap(N, Z) (12)
An(N,Z) =B(N+2,Z) + B(N—2,Z) — 2B(N, Z) (13)
Ap(N,Z) = B(N,Z +2) + B(N,Z — 2) — 2B(N, Z) (14)

where An is the neutron shell is gap and Ap is the proton shell gap.
While the two neutron separation energies may reveal some information about the
structural changes, one may also get interesting information by calculating other type
of binding energy differences, thus, the value of the two-neutron shell gap &,, is
determined by:

O2n = S2n(Z,N) — S20,(Z,N + 2) (15)

The odd and even neutron pairing gap is defined as [15, 18, 19]
AN® = %(B(Z, N+1)—2B(ZN) +B(ZN-1)) forNodd (16.1)

AN®) = —%(B(Z, N+ 1) —2B(Z,N) + B(Z,N — 1)) for N even (16.2)

The many particles reduced matrix element of the electric multipole transition
operator for an A-particle model space wave function of multipolarity A is expressed
as the sum of the product over the one-body density matrix (OBDM) elements times
reduced Single-particle matrix elements, and is given by

(1 [7]1)= (o 7] neos

= Y OBDM(f i ke kﬂ,z)<ka

kakp

Tks) (17)

92



Iragi Journal of Physics, 2021 Vol.19, No.48, PP. 89-106

where ki, ki are single —particle state for initial and final model space state (nw;J;) and
(nwsJs) respectively. Also w indicates indices to differentiate between various states
having the same J values. Giving rise to formalism of OBDM in the proton-neutron as
follows [10].

<na)fJf

+ 1 i 1.
[aka‘n@akp,tz] N@iJi

NV2A+1 (18)

where t,=1/2 for neutron and t,=-1/2 for proton.
The reduced electric transition probability B(EJ) in terms of the reduced many-
particle matrix element of the electric transition operator is defined as [19]

[(23 + 1] [(3¢]fFs |Ji>‘2
k?’ 2J,+1 (19)

where k is the wave number. The reduced electric transition probability is in units of
2 2]
e”. fm~,

OBDM( f,i,Ka,t, kgt A) =

B(EJ) =

Results and discussion

In the present research, all the theoretical calculations was performed using the
NushellX@MSU shell model code [20]. The discussion of the results is divided into
two parts, static and dynamic properties. The static nuclear properties to be
investigated include; charge, proton, and neutron densities with their associated rms
radii, binding and separation energies, pairing gap, and neutron skin thickness for the
selected chain of Si-isotopes. Whereas, the dynamic properties is devoted to outlining
the excitation energies and reduced transition probability B(E2).

1. Nuclear density and root mean square radii

The calculated charge density distributions for Si-isotopes are illustrated in Fig.1,
from 2%Si to ** Si, the calculations predict that adding additional neutrons results in a
difference in charge density mainly in the interior of the nucleus. Moving to the more
neutron-rich isotopes *Si to *°Si the discrepancies (The deviation increase up to 0.6%
with experimental values) are in the region near the center and a clear indication of a
neutron skin is observed in the ground state densities. In Fig.2 the contour plots of
neutron densities of Si-isotopes are depicted. The central part of the neutron density
reaches its maximum value in the interior region and becomes smaller in the
peripherals regions. Fig.3 illustrates the proton density distributions of Si-isotopes in
which lighter color represents the lower values for density and darker color represents
the higher density values. It is clear that the proton density for 3*Si, which has N=20
magic number exhibits a central depletion, but less pronounced than that of “°Si which
has N=28 magic number reflecting the partial filling of 2S;, level. Maximum
depletion for the whole chain of Si-isotopes that appears for N=20 (**Si) and
N=26(*’Si) as obvious in Fig.3 was at the central part and is less dense than at the
outer region, which implies the formation of bubble-like structure, Whereas the
charge density does not show any depletion in the central region as shown in Fig.2.
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Fig.1: The calculated charge density distribution for Si-isotopes using Skxs25
parameterization in comparison with experimental data taken from Ref [21-23]. The
charge-density units are in fm™. Beyond ?Si the curves and data have been progressively
offset by 1 fm and 0.01 in the charge density.

Fig.4 shows the point neutron, proton, charge, and total densities for the Si-
isotopes under consideration using Skx25 parameterization in which the experimental
charge density distribution data is available. In all plots, the mass point density is the
same on both sides of the y-axis. The left-hand sides give the neutron density and the
right-hand sides show the proton density as well as the charge density and, the
experimental data. It is obvious that there is a visible discrepancy in the charge
densities, particularly in the central region, which occur due to the error in the Fourier
transform of theoretical data compared with experimental data. The scale on all the
plots is the same and it is easily seen that the central total densities for all these
isotopes lie around the expected region.
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Fig.2 Contour plots of neutron density for Si-isotopes. The dark blue refers to high density
regions, whereas, light green refers to minimum density regions as shows in the scale. The
contour lines are drawn in a square box of dimension = 6 fm.
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Fig.3 Contour plots of proton density for Si isotopes. The dark blue refers to high density
regions, whereas, light green refers to minimum density regions as shows in the scale. The
contour lines are drawn in a square box of dimension = 6 fm.

96



0.2

0.16 |

Iragi Journal of Physics, 2021

28Gj

total density

total density 29si (b) | - - - pen(SHF) |
(a) o o pen(Exp.) | ° Pen(Exp.)
| o016 -
total density

-~ Pe(SHF)

0.2

Vol.19, No.48, PP. 89-106

0.04 |

total density
neutron density
Proton density

proton density |

0.2

— Pcn(SHF)
° o pen(ExXp.) |

30g;j

0.16 | total density

total density
neutron density

proton density

0.04

0

r (fm)

r (fm)

Fig.4: Comparison of densities for Si-isotopes (a) *®Si, (b) °Si and (c) *Si.

The calculated rms charge radii for Si-isotopes are tabulated in Table 1 together
with the available experimental data for those isotopes wherever it exists. The results
also presented graphically in Fig.5. It is obvious that, the nuclei located near the
vicinity of the dripline tend to have larger charge radius comparable to the stable one.
The lowest value of charge radius is for *®Si nucleus with N equals Z = 14 which
signifies to shell closure with 1ds;, occupation. Minimum values of the charge radii
refer to the stable isotope and it is the point where the asymmetry and the Coulomb
term originate the supreme balanced position that delivers the optimum nucleus
stability. Fig.6 shows the proton, neutron and mass rms radii for Si isotopes. The
calculated values show an unsteady increase of rms radii with the number of neutrons.
Simultaneously, the values increase less rapidly at N=20(**Si). Consequently,
systematic differences occur between the neutron and proton rms radii.
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Table 1. The calculated rms charge radii in (fm) for Si-isotopes in comparison with the
experimental data taken from Ref. [24].

Isotope SKx25 SLy4 Exp. [24]
g 3.158 3.136 3.122
g 3.156 3.143 3.1176
g 3.157 3.151 3.133
sgj 3.176 3.17
32g;j 3.195 3.189
33 3.215 3.207
g 3.235 3.226
*gj 3.236 3.231
g 3.239 3.236
g 3.243 3.242
%83 3.247 3.246
g 3.251 3.251
g 3.256 3.256
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Fig.5: The nuclear rms charge radii for Si- isotopes as a function of nucleon number A in
comparison with experimental data taken from Ref. [24].
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Fig.6 The neutron, proton, and mass rms radii for Si-isotopes as a function of nucleon
number A calculated using Skx25 parameterization.

2. Nuclear binding energy and nuclear pairing

The total nuclear binding energies of the Si-isotopes are plotted against the
nucleon number A as shown in Fig.7 using Skx25 parameterization. It is obvious that
the calculated energies follow the general trend of the experimental data.
Furthermore, it is clear that there is a sharp increase in binding energy observed
between A=28 to A=33, because neutrons start to fill the 2s;, orbit and 1ds;, which
both are less bound than 1ds,. However, starting to observe less increase in binding
energy at this point up to the dripline where the binding energy curve becomes almost
flat. There is excellent agreement between theoretical and experimental data is
noticed with 1.2 MeV average discrepancies for both stable nuclei and those near the
valley of stability. This leads to the conclusion that the SKx25 interaction is 1 to 1.2
MeV more bound than the experimental data. This occurs due to the residual
interaction which becomes weaker toward the neutron dripline. This expresses the
continuously decreasing binding energy needed to remove a pair of nucleons out of a
given nucleus.

The one neutron separation energy for 2**°Si-isotopes are shown in Fig.8.
Obviously, there is good energy agreement between calculated and experimental
calculations. The largest discrepancy is found in A=38, and A=39 where the
theoretical data is larger than experimental ones, which refer to strong pairing
interaction. But in fact, the pairing properties of nuclei near the neutron dripline
(where separation energy goes to zero) are similar to those near the valley of stability.
It can be seen from the one neutron separation energy variation that *°Si (N=16) and
%sj (N=22) have higher value in comparison with adjacent isotopes which give
indication of a new magic number and shell closure.
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Fig.7: The calculated binding energies of Si-isotopes using SHF as a function of nucleon
number A in comparison with experimental data taken from Ref. [25].
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Fig.8: The calculated one neutron separation energy of Si-isotopes as a function of
nucleon number A A in comparison with experimental data taken from Ref. [25].
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The calculated two neutron separation energies are shown in Fig.9. The agreement
between the experiment and theoretical calculation is quite good within ~ 1MeV,
except for the N=20 with a discrepancy of ~ 2MeV due to the mixing of intruder
configuration in **Si. Consequently, a high decrease of two neutron separation energy
indicates that the parent nucleus is stable and less energy is needed to remove
neutrons from the residue nuclei. Also, the results revealed that the two-neutron
separation energy for ¥Si(N=16) and **Si (N=22) have relatively higher values than
adjacent isotopes which indicates of magicity and shell closure. The particle stability
of nuclei is directly related to the nuclear binding energies, which are very sensitive to
the existence of shells and may provide clear signatures of shell closure. The shell gap
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of the last two neutrons is displayed in Fig.10. The sharp drop of the two neutron shell
gap 0y, for N=20, N=22 is evidence of shell closure [26-29].
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Fig.9: The calculated two neutron separation energy of Si-isotopes using SHF in
comparison with experimental data taken from Ref. [25].
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Fig.10: The calculated two neutron shell gap d,, Of Si-isotopes as a function of
nucleon number A in comparison with experimental data taken from Ref. [25].
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Fig.11 shows pairing gap A3n as a function nucleon number (A), it turns out that
the lowest value for A3n is observed in all nuclei with an even neutron number N. It
is clear that the calculated shell gaps are in good agreement with experimental data.
Moreover, *°Si and **Si have higher values of pairing gap compared with neighboring
isotopes due to the magicity and shell closure for N=16 and N=22. Fig.12 illustrates
the neutron skin thickness Rn-Rp, plotted as a function of the nucleon number for Si
isotopes. In this isotopic chain, we get the maximum value of a Rn-Rp as 0.352-0.417
fm for *’Si to *°Si which occur due to 1f7/2 occupation. More specifically, the neutron
skin arises because the distribution of neutrons extends out further in radius than the

proton distribution.
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Fig.11: The calculated neutron pairing gap as a function of
comparison with experimental data taken from Ref. [25].
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3. Energy levels and reduced transition probability

Fig.13 shows the calculated energy level scheme for low and higher-lying 2" states
in even-even Si-isotopes. The calculations were performed with sdpf shell model
space and SDPFK two-body effective interaction and were compared with the
experimental data. One finds that the agreements between calculated energy levels
and the experimental data are fairly good. The first excited 2* energy increases
slightly with increasing neutron number for %Si to **Si until **Si is reached where the
value start to increase sharply up to 4.968 MeV and then the value starts to decrease
again in *°Si to *Si which indicates that N=22 is shell closure [30-34] and the gap
grows with increasing neutron number due to n-n interaction resulting in shell gap.
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Fig.13: Experimental and theoretical energy levels for for low and higher-lying 2" states
in even-even Si-isotopes.

Fig.14 (a) illustrates the systematic behavior of the electromagnetic transition
probabilities B(E2) in the Si isotopes chain which is drawn in comparison with the
excitation energies (Fig.14(b)). It is obvious that the experimental data are in fairly
good agreement with the calculated data from 22Si to 3*Si but rapid deviation starts to
occur with the experimental data, taken from Ref [35]. As the neutron number
increases from N =12 (*®Si), the degree of collectivity smoothly and monotonically
decreases until the closed shell is reached at N = 20 (3*Si). There is large discrepancy
between the experimental B(E2) and calculated values in the Si isotopes beyond
N= 20 due to model space restriction which directly effects the excitation energy
value as obvious in Fig.14.
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Conclusions

We have investigated the microscopic structures of 2“*°Si-isotopes toward neutron
dripline in the framework of the Skyrme-Hrtree-Fock method in the sdpf valence
space using Skx25 and SLy4 Skyrme parameterizations. The calculations have
introduced a reasonable agreement between measured and calculated binding energy,
charge radii as well as charge densities .This proves that our method is accurate and
sophisticated. This agreement is a key point for extrapolating of other quantities such
as neutron and proton radii, skin thickness and pairing energies. The level scheme,
San, 02n Of Si isotopes exhibit good agreement with all known experimental data. We
were able to reproduce the main trends of the binding energies of Si isotopes from the
stable to the neutron drip line isotopes. Another significant conclusion is that the two
neutron shell gap 62, and the pairing gap A3n have the highest value in comparison
with adjacent isotopes around N=16, 22 (*° Si, **Si) which indicates a new magic
number and shell closure. Consequently, this quantity measure the size of the step
found in the two-nucleon separation energy and, therefore, it is strongly peaked at
magic shell closures. Moreover, the highest value of the pairing gap is occurred in
N=20 (®'Si). Our results revealed that the two-neutron separation energy for
%05j(N=16) and **Si (N=22) have relatively higher values than adjacent isotopes
which indicates magicity and shell closure. The higher values of two neutron shell gap
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don and pairing gap A3n  occurred for N=16, N=20, and N=22 which led us to
conclude that N=16 and N=22 are a new magic numbers and shell closure.
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