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Abstract Key words 
     Chaotic properties of nuclear energy spectrum in 68Ge are 
analyzed using the framework of the nuclear shell model. Nuclear 
energies of considered states are obtained via performing f5p shell 
model calculations using the OXBASH computer program together 
with the effective interaction of F5PVH. The 68Ge nucleus is 
suggested to consist of a core 56Ni with twelve particles (8 neutrons + 
4 protons) in f5p-model space (2𝑝3 2⁄  , 1𝑓5 2⁄  and 2𝑝1 2⁄ ). The density 
of energy level of studied classes have been found to have a form of 
Gaussian, which is in accord with the prediction of other theoretical 
studies. The distributions of the spacing P(s) and ∆3 statistic for the 
studied states are well described by the Gaussian orthogonal 
ensemble (GOE). Furthermore, these fluctuations are independent on 
the spin J.  
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 بأستخدام انموذج القشرة النووي 68Geالخواص الفوضويه لطيف طاقة النواة 
  2خلف حمودي عادل و 1العباس علي عبد حيدر

 وزارة التربيه، المثنى، العراق1
 العراق، بغداد بغداد، جامعة ،العلوم كلية الفيزياء، قسم2 

 الخلاصة
اجريت حسابات . 68Geتم استخدام انموذج القشرة النووي في دراسة الخواص الإحصائية لطيف طاقة النواة      

لغرض ، F5PVHسوية مع التفاعل المؤثر  OXBASHبواسطة البرنامج الحاسوبي ، انموذج القشرة النووي
 12مع  56Niبأنها مؤلفه من القلب المغلق  68Geتم افتراض النواة . الحصول على الطيف الطاقي للنواة أعلاه

هذه أوضحت . 2p1/2و   1f5/2و   2p3/2المعرف بالمدارات  f5pجسيمة  تتحرك ضمن أنموذج الفضاء النووي 
أن ). Gaussian shape(لها شكل كاوسي ، قيد الدراسة،الدراسة بأن كثافة مستويات الطاقة للحالات النووية 

) GOE(طاقم الحالات المتعامدة الكاوسي  تتوافق تماما مع توزيع 3∆والأحصاء  sP)(توزيعات الأحصاء 
لقد وجدنا أيضا بأن التقلبات الإحصائية للتوزيعات أعلاه لا تعتمد على الزخم الزاوي . للمصفوفات العشوائية

 .Jالكلي 
 

Introduction 
     Quantum chaos was explored 
hugely in the past 30 years [1]. 
Bohigas et al. [2] assumed a 
relationship amongst disorder in a 
classical system and the statistical 
fluctuations of nuclear spectrum of 
identical quantum system, where a 

systematic evidence of Bohigas 
assumption is presented in [3]. At the 
moment, it is eminent that quantum 
similar of utmost classically disordered 
systems depict fluctuations in energies 
that come to an agreement with 
Random  Matrix  Theory  (RMT) [4, 5] 
but quantum equivalents of classically 
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ordered systems depict variations in 
energies which come to an agreement 
with the Poisson  limit. Under time 
reversal, the proper formula of RMT 
be the GOE. RMT had been, at first, 
operated toward illustrate the 
fluctuation features of nucleon 
resonance in the complex nucleus [6]. 
RMT developed into a typical scheme 
for probing of common chaotic 
features in disordered system [7 - 10]. 
     Mean field approximation may be 
employed to explore the disordered 
manners of single particle dynamic in 
nuclei. However, the nuclear 
interactions mix various mean field 
which in sequence leads to change the 
fluctuations properties of the nuclear 
spectrum and wave functions. 
Actually, one can investigate these 
fluctuations through utilizing different 
models. The nuclear shell model 
provides an attractive context for such 
investigations, where effective two-
body residual interactions are 
obtainable and the basis states are 
designated by exact quantum numbers 
of J (angular momentum), T (isospin) 
and π (parity) [11]. In [12-16], the 
context of the nuclear shell model was 
utilized to examine eigenvector 
component distributions. The basis 
vector amplitudes were found [14] to 
be in accordance with the Gaussian 
distribution (GOE prediction) in 
regions of large level density and 
diverged from Gaussian manners in 
further regions unless the computation 
employs degenerate single-particle 
energies. The investigation [16] as well 
recommended that computations by 
means of the degenerate single particle 
energies are disordered at lower 
excitation energy than that of realistic 
computations. 
     Electromagnetic probabilities in 
nuclei are observables which are 
related to the wave function. The 
examination of their fluctuations 
would enhance the universal spectral 

investigation as well as help as an extra 
sign of disorder in the quantum system. 
In the previous investigations [17-22] 
we adopted the context of the RMT 
together with the nuclear shell model 
to explore the physical characteristics 
of chaos in nuclear spectra, 
electromagnetic probabilities, and 
moments for various nuclei located in 
different shell model spaces. As a 
whole, the results were very good 
depicted by the GOE limit. 
In [23] the statistical fluctuations of 
energy spectra in 32A (32S, 32P and 32Si) 
nuclei was investigated using the 
empirical interaction of Wildenthal 
[24]. The statistical fluctuations were 
in very well accordance with the GOE. 
Furthermore, they demonstrated 
independency on spins J and isospin T. 
In [25], the work was repeated as in 
[22] but this time we considered the 
higher model space of N82 and chose 
the nucleus 138Ba as case study, where 
the  interaction of N82K was adopted 
in the calculations [26].  
     In this research, the spectral 
variations in 68Ge nucleus are explored 
using an effective two body residual 
interaction of f5pvh for twelve 
particles (4 protons + 8 neutrons) in the 
f5p-space. The nuclear level density of 
considered states is noticed have a 
Gaussian shape, which is consistent 
with the prediction of other theoretical 
studies. The statistical properties of 
P(s) and 𝛥3  distributions are well 
described by the Gaussian orthogonal 
ensemble of random matrices. 
Furthermore, these fluctuations are 
independent on the spin J. 
 
Theory 
The effective shell model Hamiltonian 
of many particle systems can be 
expressed by [14]. 
𝐻 = 𝐻0 + 𝐻′                                    (1) 
where 𝐻0 and 𝐻′are the independent 
particle (one body) Hamiltonian and 
the residual two-body interaction of 𝐻. 
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The one-body (unperturbed) 
Hamiltonian 
  𝐻0 = ∑ 𝑒𝜆𝑎𝜆

+𝑎𝜆,𝜆                              (2) 
 
characterizes non-interacting fermions 
in the mean field of the appropriate 
spherical core. The single-particle 
orbitals |𝜆⟩ have quantum numbers 
𝜆 = (𝑙𝑗𝑚𝜏) of orbital (𝑙) and total 
angular momentum (𝑗), projection 
𝑗𝑧 = 𝑚 and isospin projection 𝜏 . The 
antisymmetrized two-body interaction 
𝐻′ of the valence particles is written as 
𝐻′ = 1

4
 ∑𝑉𝜆𝜇;𝜈𝜌𝑎𝜆

+𝑎𝜇+𝑎𝜈𝑎𝜌.              (3) 
 
The many-body wave functions with 
good spin J and isospin T quantum 
numbers are constructed via the m  -
scheme determinants which have, for 
given J and T, the maximum spin and 
isospin projection [14], 
|𝑀 = 𝐽,𝑇 = 𝑇3;𝑚⟩                           (4) 
 
where 𝑚 span the m - scheme subspace 
of states with 𝑀 = 𝐽 and 𝑇3 = 𝑇.  
The many-body hamiltonian 
𝐻𝑘𝑘′
𝐽𝑇 = ∑ ⟨𝐽𝑇; 𝑘|𝐻|𝐽𝑇; 𝑘′⟩𝑘                (5) 

 
is eventually diagonalized to obtain the 
eigenvalues 𝐸𝛼 and the eigenvectors 
|𝐽𝑇;𝛼⟩ = ∑ 𝐶𝑘𝛼|𝐽𝑇; 𝑘⟩𝑘                      (6)        
 
here, the eigenvalues 𝐸𝛼 are considered 
as the main object of the present 
investigation. 
     The statistical fluctuation of nuclear 
energy spectrum are gotten by the 
nuclear level density and the statistical 
measures of P(s) and ∆3 statistics [4, 
27]. The staircase function 𝑁(𝐸) of the 
nuclear shell model spectrum is firstly 
build, where 𝑁(𝐸)  is the number of 
levels with excitation energies ≤ E. 
Here, a smooth fitting to 𝑁(𝐸) has 
been achieved adopting the polynomial 
of 8th degree. The unfolded energy 
spectrum is in sequence expressed by 
the relationship [12]. 
𝐸𝚤� = 𝑁�(𝐸𝑖)                                        (7) 

The real spacings reveal strong 
fluctuations whereas the unfolded 
levels 𝐸𝚤�  have a constant average 
spacing. 
Level density is denoted as the level 
number per energy at a given 
excitation energy, locates at the range 
𝐸 to 𝐸 + 𝑑𝐸, and expressed as  
𝜌(𝐸) = 𝑑𝑁

𝑑𝐸
                                         (8) 

The distribution of P(s) is described as 
the probability of the adjacent energy 
levels are far apart. The ith spacing is  
is found via .~~

1 iii EEs −= +  An ordered 
system is predicted to behave with the 
Poisson limit 
𝑃(𝑠) = exp (−𝑠)                               (9) 
If the system is classically chaotic, one 
expects to obtain the Wigner 
distribution or Wigner surmise 
𝑃(𝑠) = 𝜋

2
s exp �−𝜋𝑠

2

4
�                    (10) 

which is in agreement with GOE 
distribution.  
The  ∆3  statistic, which are employed 
to determine the stiffness of energy 
spectrum, defined by [18] 
 ∆3(𝛼, 𝐿) = 𝑚𝑖𝑛𝐴,𝐵

1
𝐿

 ∫ [𝑁(𝐸�) −𝛼+𝐿
𝛼

(𝐴𝐸� + 𝐵)]2  𝑑𝐸�                               (11) 
 
It determines the deviancy of the N(E)  
from a conventional line. It is well-
known that rigid (soft) spectra have 
small (large) values of .3∆  For the 
purpose of getting a smooth 
distribution for the ∆3���(𝐿), the ∆3 (𝐿) is 
averaged over a number 𝑛𝛼 of intervals 
(𝛼,𝛼 + 𝐿) 
 
∆3���(𝐿) = 1

𝑛𝛼
∑ ∆3 (𝛼, 𝐿)𝛼                (12) 

The successive intervals are taken to 
overlap by 𝐿 2⁄ . In the Poisson 
limit, ∆3 (𝐿) = 𝐿 15⁄ . In the GOE 
limit, ∆3≈ 𝐿 15⁄  for small L, 
while, ∆3 ≈  𝜋−2𝑙𝑛𝐿  for large L. 
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Results and discussion 
     The computations of the shell-
model (for the 68Ge) have been carried 
out via the program of OXBASH [28]. 
The 68Ge nucleus is investigated using 
an effective two body residual 
interaction of F5PHV [29] for 12 
nucleons (4 protons + 8 neutrons) in 
the f5p model space with T = 2.  
Table 1 display the dimensions of all 
considered Jπ = (0+,1+,  5+, 9+, and 10+) 
with T=2 for 12 valence particles in the 
f5p space. 
 
Table 1: Dimensions of all considered      
Jπ = ( 0+,1+,  5+, 9+, and 10+) states for 12 
particles in the f5p space. 

Jπ Dimension (N) 
0+ 874 
1+ 2319 
5+ 3059 
9+ 393 
10+ 160 

 
    Fig.1 presents the computed level 
density 𝜌 (E) (histograms) for the Jπ 

(0+, 1+, 5+, 9+, and 10+) classes of 
states. The dashed line, which 
describes the Gaussian fit, is also 
presented for comparison. The level 
density 𝜌 (𝐸) of 68Ge (T = 2) is plotted 
as a function of the excitation energy 

Ex (in MeV). In this figure evident that 
the distributions of 𝜌 (𝐸) (histograms) 
have a bell-shaped curve that are 
symmetric about the mean energy Eₒ 
where these histograms are fitted by 
the Gaussian shape [30] (the dashed 
line). In the cases of taking a finite 
Hilbert space, 𝜌 (𝐸) vanishes at lower 
and upper boundaries of the spectrum 
while in the middle of the spectrum it 
reaches to maximum. It is clear that 
with moving from Jπ =0+ towards          
Jπ =10+, the level density becomes 
narrow in width (shrink) due to the 
lack of the matrix dimension that exists 
in a Table 1. Anyway, level density 
(histograms) 𝜌 (𝐸) has a Gaussian 
shape that is in agreement with 
Gaussian orthogonal ensemble (GOE). 
The values of parameters E0 (the mean 
energy) and σ (the standard deviation) 
for each Jπ class of states used in the 
Gaussian fit, are displayed in Table 2. 
It is obvious that there is no significant 
change in E0 for all considered values 
of Jπ. It is also seen no a clear change 
in the parameter σ for lower value of Jπ 
but found an obvious change for higher 
values of Jπ as a result of the lack of 
dimensions in the higher Jπ (look at 
Table 1). 

 

Fig. 1: The level density (histograms) is compared with the Gaussian fit (dash curves) in 
68Ge for Jπ = (0+,1+, 5+, 9+, and 10+) states. 
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Table 2: Values of E0 and σ to 68Ge  for various Jπ = ( 0+,1+,  5+, 9+, and 10+) states for 12 
particles move in the f5p-shell model space. 

Jπ E0(MeV) 𝜎 (MeV) 
0+ 12.119730 3.246461 
1+ 12.224740 3.084587 
5+ 12.374110 2.918783 
9+ 12.356870 2.266879 

10+ 12.293750 2.042502 
  
     Fig. 2 shows the level spacing P(s), 
for different unfolded Jπ ( 0+,1+, 5+, 9+ 
and 10+) classes of states with T = 2 
(68Ge). The solid line describes the 
GOE distribution, and characterizes 
chaotic systems. The dashed line 
describes the Poisson distribution, and 
depicts regular systems. The 
histograms denote the computed P(s) 
distribution and demonstrate a chaotic 
presentation, which in sequence reveal 

a good accordance with GOE limit. 
The repulsion of levels at small 
spacing (a distinctive property of 
chaotic level distribution), formed due 
to the mixing via the off-diagonal 
interactions, is noticeably found in the 
computed histograms. Inspection of 
Fig.2 provides the conclusion that the 
nearest neighbor level spacing 
distributions are independent of the 
spin Jπ. 
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Fig. 2: The nearest neighbor level spacing distributions P(s) in 68Ge for various Jπ = (0+,1+, 
5+, 9+, and 10+) states. The GOE (solid line) and Poisson distributions (dashed line). 

 
     Fig.3 presents the rigidity of the 
nuclear spectrum (∆3 distribution), for 
the T=2 (68Ge) nucleus. The 
computed ∆3(L), depicted  by open 
circles, is plotted against L for the 
unfolded Jπ ( 0+,1+, 5+, 9+ and 10+) 
classes. For the aim of comparison the 
Poisson and GOE limits are also 

presented and described by the dashed 
and solid lines, respectively. The 
computed ∆3(L) statistics of all 
considered states, which have the 
feature of chaotic systems, are in 
astonishing accordance with GOE 
limit. The calculated distribution of ∆3 
statistics for Jπ =9+ and 10+ states 
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reveal a slight oscillations about the 
GOE limit. These oscillations are 
caused by the number of intervals 𝑛𝛼, 
which is related to the dimension of the 
Jπ classes (see Table 1). In addition, 
they exhibit independency on the spin 

J. It is apparent that the results that we 
have obtained in Fig. 3 for the spectral 
rigidity [∆3(𝛼, L) statistic] are 
consistent with those obtained in Fig. 2 
for the nearest neighbor level spacing 
distributions P(s).  
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Fig. 3: The average ∆𝟑 statistics in 68Ge for various Jπ = (0+,1+, 5+, 9+, and 10+)  states. The 
open circles are the calculated results with full Hamiltonian. The solid line is GOE 
distribution and dash line is the Poisson distribution. 

 
Conclusions 
     It is found that the nuclear level 
density has a Gaussian shape, which is 
in agreement with Gaussian orthogonal 
ensemble (GOE).  The nearest 
neighbor level spacing distribution P(s) 
and the ∆3 statistics are found to be in 
accordance with the Gaussian 
orthogonal ensemble (GOE) of random 
matrices. Besides, the distributions of 
P(s) and ∆3 are independent of the   
spin J. 
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