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Abstract Key words

Chaotic properties of nuclear energy spectrum in ®Ge are Chaotic proprieties,
analyzed using the framework of the nuclear shell model. Nuclear random matrix
energies of considered states are obtained via performing f5p shell theory, statistical
model calculations using the OXBASH computer program together fluctuations, nuclear
with the effective interaction of FSPVH. The %8Ge nucleus is P Shell model.
suggested to consist of a core *°Ni with twelve particles (8 neutrons +
4 protons) in f5p-model space (2ps,, , 1fs/, and 2p; ;). The density
of energy level of studied classes have been found to have a form of
Gaussian, which is in accord with the prediction of other theoretical Article info.
studies. The distributions of the spacing P(s) and A5 statistic for the Received: Jan. 2020
studied states are well described by the Gaussian orthogonal Accepted: Feb. 2020
ensemble (GOE). Furthermore, these fluctuations are independent on  Published: Mar. 2020
the spin J.
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Introduction systematic evidence of Bohigas
Quantum chaos was explored assumption is presented in [3]. At the
hugely in the past 30 years [1]. moment, it is eminent that quantum
Bohigas et al. [2] assumed a similar of utmost classically disordered
relationship amongst disorder in a systems depict fluctuations in energies
classical system and the statistical that come to an agreement with
fluctuations of nuclear spectrum of Random Matrix Theory (RMT) [4, 5]
identical quantum system, where a but quantum equivalents of classically
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ordered systems depict variations in
energies which come to an agreement
with the Poisson limit. Under time
reversal, the proper formula of RMT
be the GOE. RMT had been, at first,
operated  toward illustrate  the
fluctuation  features of  nucleon
resonance in the complex nucleus [6].
RMT developed into a typical scheme
for probing of common chaotic
features in disordered system [7 - 10].

Mean field approximation may be
employed to explore the disordered
manners of single particle dynamic in
nuclei.  However, the nuclear
interactions mix various mean field
which in sequence leads to change the
fluctuations properties of the nuclear
spectrum and wave functions.
Actually, one can investigate these
fluctuations through utilizing different
models. The nuclear shell model
provides an attractive context for such
investigations, where effective two-
body  residual interactions are
obtainable and the basis states are
designated by exact quantum numbers
of J (angular momentum), T (isospin)
and w (parity) [11]. In [12-16], the
context of the nuclear shell model was
utilized to examine eigenvector
component distributions. The basis
vector amplitudes were found [14] to
be in accordance with the Gaussian
distribution (GOE prediction) in
regions of large level density and
diverged from Gaussian manners in
further regions unless the computation
employs degenerate single-particle
energies. The investigation [16] as well
recommended that computations by
means of the degenerate single particle
energies are disordered at lower
excitation energy than that of realistic
computations.

Electromagnetic  probabilities in
nuclei are observables which are
related to the wave function. The
examination of their fluctuations
would enhance the universal spectral
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investigation as well as help as an extra
sign of disorder in the quantum system.
In the previous investigations [17-22]
we adopted the context of the RMT
together with the nuclear shell model
to explore the physical characteristics
of chaos in nuclear spectra,
electromagnetic  probabilities, and
moments for various nuclei located in
different shell model spaces. As a
whole, the results were very good
depicted by the GOE limit.

In [23] the statistical fluctuations of
energy spectra in %A (*2S, %P and **Si)
nuclei was investigated using the
empirical interaction of Wildenthal
[24]. The statistical fluctuations were
in very well accordance with the GOE.
Furthermore,  they  demonstrated
independency on spins J and isospin T.
In [25], the work was repeated as in
[22] but this time we considered the
higher model space of N82 and chose
the nucleus **Ba as case study, where
the interaction of N82K was adopted
in the calculations [26].

In this research, the spectral
variations in ®Ge nucleus are explored
using an effective two body residual
interaction of fbpvh for twelve
particles (4 protons + 8 neutrons) in the
f5p-space. The nuclear level density of
considered states is noticed have a
Gaussian shape, which is consistent
with the prediction of other theoretical
studies. The statistical properties of
P(s) and A4; distributions are well
described by the Gaussian orthogonal
ensemble of random  matrices.
Furthermore, these fluctuations are
independent on the spin J.

Theory

The effective shell model Hamiltonian
of many particle systems can be
expressed by [14].

H=H,+H' (1)
where H, and H'are the independent
particle (one body) Hamiltonian and
the residual two-body interaction of H.
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The one-body (unperturbed)
Hamiltonian
Hy =Y e aya, (2)

characterizes non-interacting fermions
in the mean field of the appropriate
spherical core. The single-particle
orbitals |A) have quantum numbers
A = (ljmt) of orbital (I) and total
angular momentum (j), projection
Jj, = m and isospin projection T . The
antisymmetrized two-body interaction
H' of the valence particles is written as

1
H' = ” Y Vapvpay a;t a,a,. (3)

The many-body wave functions with
good spin J and isospin T quantum
numbers are constructed via the m-

scheme determinants which have, for
given J and T, the maximum spin and
isospin projection [14],
M =],T =Ts;m) (4)
where m span the m - scheme subspace
of stateswithM =Jand T; =T

The many-body hamiltonian

Ho = S T; kIH|JT; k') ()
is eventually diagonalized to obtain the
eigenvalues E, and the eigenvectors
UT; a) = X CUT; k) (6)
here, the eigenvalues E, are considered
as the main object of the present
investigation.

The statistical fluctuation of nuclear
energy spectrum are gotten by the
nuclear level density and the statistical
measures of P(s) and A5 statistics [4,
27]. The staircase function N(E) of the
nuclear shell model spectrum is firstly
build, where N(E) is the number of
levels with excitation energies <E.
Here, a smooth fitting to N(E) has
been achieved adopting the polynomial
of 8" degree. The unfolded energy
spectrum is in sequence expressed by
the relationship [12].

E, =N(E) (7)
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The real spacings reveal strong
fluctuations whereas the unfolded
levels E, have a constant average

spacing.
Level density is denoted as the level
number per energy at a given

excitation energy, locates at the range
E to E + dE, and expressed as

p(E) == )
The distribution of P(s) is described as
the probability of the adjacent energy
levels are far apart. The i" spacing s,

is found via s, = E,., — E,. An ordered

system is predicted to behave with the
Poisson limit

P(s) = exp(=s) 9)
If the system is classically chaotic, one

expects to obtain the Wigner
distribution or Wigner surmise

i —ns?
P(s) = > S exp (T) (20)

which is in agreement with GOE
distribution.

The A statistic, which are employed
to determine the stiffness of energy
spectrum, defined by [18]

As(a, L) = mmAB = [N -
(AE + B)]? (11)

It determines the deviancy of the N(E)
from a conventional line. It is well-
known that rigid (soft) spectra have
small (large) values of A,. For the

purpose of getting a smooth
distribution for the A;(L), the A; (L) is
averaged over a number n, of intervals
(q,a+1L)

B3(L) = 1= B ds (@, 1) (12)
The successive intervals are taken to
overlap by L/2. In the Poisson
limit, A; (L) = L/15. In the GOE
limit, A;= L/15  for  small L,
while, A; ~ m2InL for large L.
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Results and discussion

The computations of the shell-
model (for the ®®Ge) have been carried
out via the program of OXBASH [28].
The ®Ge nucleus is investigated using
an effective two body residual
interaction of F5PHV [29] for 12
nucleons (4 protons + 8 neutrons) in
the f5p model space with T = 2.
Table 1 display the dimensions of all
considered J* = (0*,1%, 5%, 9%, and 10%)
with T=2 for 12 valence particles in the
f5p space.

Table 1: Dimensions of all considered
J*=(0"1", 5% 9%, and 10") states for 12
particles in the f5p space.

J" Dimension (N)
0" 874
17 2319
5° 3059
9" 393
10" 160

Fig.1 presents the computed level
density p (E) (histograms) for the J*
(0%, 1%, 5%, 9%, and 10%) classes of
states. The dashed line, which
describes the Gaussian fit, is also
presented for comparison. The level
density p (E) of ®®Ge (T = 2) is plotted
as a function of the excitation energy
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Ex (in MeV). In this figure evident that
the distributions of p (E) (histograms)
have a bell-shaped curve that are
symmetric about the mean energy E,
where these histograms are fitted by
the Gaussian shape [30] (the dashed
line). In the cases of taking a finite
Hilbert space, p (E) vanishes at lower
and upper boundaries of the spectrum
while in the middle of the spectrum it
reaches to maximum. It is clear that
with moving from J* =0" towards
J* =10", the level density becomes
narrow in width (shrink) due to the
lack of the matrix dimension that exists
in a Table 1. Anyway, level density
(histograms) p (E) has a Gaussian
shape that is in agreement with
Gaussian orthogonal ensemble (GOE).
The values of parameters E, (the mean
energy) and o (the standard deviation)
for each J" class of states used in the
Gaussian fit, are displayed in Table 2.
It is obvious that there is no significant
change in Eq for all considered values
of J". It is also seen no a clear change
in the parameter o for lower value of J*
but found an obvious change for higher
values of J* as a result of the lack of
dimensions in the higher J* (look at
Table 1).
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Fig. 1: The level density (histograms) is compared with the Gaussian fit (dash curves) in

%Ge for J" = (0*,1%, 5%, 9*, and 10") states.
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Table 2: Values of Eq and o to ®®Ge for various J” =

particles move in the f5p-shell model space.

Vol.18, No.44, PP. 109-115

(0%,1%, 5%, 9%, and 10%) states for 12

T Eo(MeV) o (MeV)
0 12.119730 3.246461
T 12.224740 3.084587
5 12.374110 2.918783
9 12.356870 2.266879
10° 12.293750 2.042502

Fig. 2 shows the level spacing P(s),
for different unfolded J* ( 0%,1%, 5%, 9"
and 10%) classes of states with T = 2
(*®®Ge). The solid line describes the
GOE distribution, and characterizes
chaotic systems. The dashed line
describes the Poisson distribution, and
depicts  regular  systems.  The
histograms denote the computed P(s)
distribution and demonstrate a chaotic
presentation, which in sequence reveal

a good accordance with GOE limit.
The repulsion of levels at small
spacing (a distinctive property of
chaotic level distribution), formed due
to the mixing via the off-diagonal
interactions, is noticeably found in the
computed histograms. Inspection of
Fig.2 provides the conclusion that the
nearest neighbor level  spacing
distributions are independent of the
spin J".
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Fig. 2: The nearest neighbor level spacing distributions P(s) in ®Ge for various J* =

(0",17,

5%, 9%, and 10") states. The GOE (solid line) and Poisson distributions (dashed line).

Fig.3 presents the rigidity of the
nuclear spectrum (A5 distribution), for
the T=2 (®Ge) nucleus. The
computed A;(L), depicted by open
circles, is plotted against L for the
unfolded J* ( 0%,1%, 5%, 9" and 10%)
classes. For the aim of comparison the
Poisson and GOE limits are also
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presented and described by the dashed
and solid lines, respectively. The
computed A;(L) statistics of all
considered states, which have the
feature of chaotic systems, are in
astonishing accordance with GOE
limit. The calculated distribution of A,
statistics for J* =9" and 10" states
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reveal a slight oscillations about the
GOE limit. These oscillations are
caused by the number of intervals n,,
which is related to the dimension of the
J* classes (see Table 1). In addition,
they exhibit independency on the spin
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J. It is apparent that the results that we
have obtained in Fig. 3 for the spectral
rigidity [As(a, L) statistic] are
consistent with those obtained in Fig. 2
for the nearest neighbor level spacing
distributions P(s).
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Fig. 3: The average A3 statistics in ®Ge for various J* = (0*,1%, 5%, 9%, and 10") states. The
open circles are the calculated results with full Hamiltonian. The solid line is GOE
distribution and dash line is the Poisson distribution.

Conclusions

It is found that the nuclear level
density has a Gaussian shape, which is
in agreement with Gaussian orthogonal
ensemble (GOE). The nearest
neighbor level spacing distribution P(s)
and the Aj statistics are found to be in
accordance  with  the  Gaussian
orthogonal ensemble (GOE) of random
matrices. Besides, the distributions of
P(s) and A3 are independent of the
spin J.
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