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Abstract

In this work, plasma parameters such as (electron temperature
(Te), electron density (ne), plasma frequency and Debye length (Ap))
were studied by using spectral analysis techniques. The spectrum of
the plasma was recorded with different energy values, SnO, and ZnO
anesthetized at a different ratio (X = 0.2, 0.4 and 0.6). Spectral study
of this mixing in the air. The results showed electron density and
electron temperature increase in zinc oxide: tin oxide alloy targets. It
was located that the intensity of the lines increases in different laser
peak powers when the laser peak power increases and then decreases
when the force continues to increase.
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Introduction

LIBS is an atomic emission
spectrum analysis technique. It is a
high pulsed laser power density and is
translated into a small target size that
leads to the breakdown of analyzes in
ions and free electrons, leading to the
determination of plasma by both
continuum and atomic emission [1].
The laser-generated plasma parameters
progress rapidly and are strongly
linked to irradiation conditions such as
the duration of the pulse laser, the
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intensity of the laser incident on the
surface of the target, the wave length
of the laser and the surrounding
pressure, which are temporary by
nature [2,3]. Optical spectroscopy
(OES) is used for years to determine
plasma parameters such as electron
temperature, Debye length, electron
density and plasma frequency [4].
Plasma diagnostics can be performed
by calculating the density and
temperature of the electron in the
plasma. Determination of the power of
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the  distribution  functions  that
determine the temperature of the
plasma according to the temperature,
and determine the thermal equilibrium
state of the plasma according to
electron density [5]. The electron
temperature of plasma was calculated
using Boltzmann plot method [6]:
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where [;; is relative emission line
density between energy levels I and j.
gj 1s the degeneracy or Statistical
weight of the upper level emitted from
the transition phase.

Aji wavelength (in nano metres).

E; is the excitation energy (in e€V) for
level i.

Aj; is The possibility of automatic
transmission of radiation from the level
i to the lower level j .

N Densities of the population of the
state.

k is the Boltzmann constant.

The measurement of the electron
density through Stark broadening
effect requires a free line of self-
absorption [7]
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ws 18 the theoretic line full width Stark
broadening parameter, Calculates the
same density as the reference
electron, N, ~10'7 cm™.

Debye’s length can be calculated by
the formula [8]:
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where Kj is Boltzmann’s constant

n, is the electron density.

T, is the plasma temperature.

e is electron charge.

Plasma frequency can be given as [8]:
1

wpe=(neez/mego)5 (4)

where m, is the electron mass.

&g 1s the electric constant, ,e is electron
charge and n, is the electron number
density

Experiment part

The spectra of optical emission of
zinc oxide-tin oxide plasma are
registered using the experimental setup
of laser-induced breakdown
spectroscopy (LIBS) shown in Fig.1.
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Fig.1: Configure the traditional LIBS system used in this work.
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It consists of (pulsed Nd: YAG
laser of 1064 nm wavelength, 6 Hz
pulse repetition frequency, 9 ns
duration and peak power differ from
6 mW to 36 mW). The laser beam
focuses on the surface of the irradiated
sample located in the focal length of a
Converging lens (f = 10 cm). The
optical fiber image detector is set at 45
° with the beam direction at a distance
of 5 cm from the plasma sample.
Spectrum analyzer in the spectral range
of (300 nm—800 nm).

1
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Results and discussions

The optical emission spectrum of
laser-produced zinc oxide-tin oxide
plasma with (x= 0.2, 0.4 and 0.6) in air
in the range of 300 nm to 800 nm is
shown in Fig.2 (a, b and c) clearly this
Figure explain the intensity of the
spectral lines increases with the
increase of laser peak power. This can
be explained as follows: Increased
laser energy increases the overall
ablation rate of the target, which means
increasing the excited atoms and thus
increasing ~ with  higher  spectral
intensity.
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'Fig.2 (a): Spectroscopic patterns for plasma emission from X= 0.2 SnO,: ZnO target at

different laser energy.
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Fig.2 (b): Spectroscopic patterns for plasma emission from X= 0.4 SnO,: ZnO target at

different laser energy.
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Fig.2 (c): Spectroscopic patterns for plasma emission from X= 0.6 SnO,: ZnO target at

different laser energy.

The electron temperatures (Te)
were limited of the best linear fit slope
in the Boltzmann plot (1). Boltzmann's
plot requires a war of the same atomic
type and the ionization phase itself
(choose four peaks for Snl specie at
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304.101 nm, 317.772 nm, 327.000 nm
and 380.656 nm) for Zno:SnO, at
x=0.2 as shown in Fig.3, also (choose
four peaks for Znl specie at 307.59 nm,
330.294 nm, 334501 nm and
636.235 nm) for Zno:SnO, at x=0.4 as
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it is shown in Fig.4. for Zno:SnO, at
x=0.6 (choose four peaks for snl specie
at (304.101 nm, 317.772 nm,
327.000 nm and 380.656 nm) as shown
in Fig.5, and needed higher levels,
statistical ~ weights and transfer
potentials used in the experimental
plots were obtained for each
component from the National Institute

Vol.17, No.42, PP. 125-135

of Standard Technology database
(NIST) [9], where the electron
temperature equal to Inverted slope of
fitting line(the slope of fitted line
equals -1/k BT). for all fitting lines.
R2 is a statistical coefficient indicating
the quality of linearity that takes a
value between (0, 1). The best one
have R2 value nearer to 1.
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Fig. 3: Boltzmann plot for plasma emission from X= 0.2 SnO,: ZnO target at different laser

energy.
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Fig.4: Boltzmann plot for plasma emission from X= 0.4 SnO,: ZnO target at different laser
energy.
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Fig.5: Boltzmann plot for plasma emission from X= 0.6 SnO,: ZnO target at different laser

energy.

The densities of electron were
calculated by using stark broadening
as shown in Fig.6 from Eq.(2) Stark
broadening of of the plasma spectral
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lines results from collisions with the
charged species, which widens the
line and a shift in the peak
wavelength.
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Fig.6: Stark broadening for 498.4 nm Znll line for mixed samples (X=0.2, X=0.4 and
X=0.6) at different laser energy.

electron density and the electron

The calculated values of the temperature are increased with
electron temperatures (Te) by using increase the laser pulse energy as it
Boltzmann plot Eq.(1) show that is shown in Fig.7 (a, b and c¢) At the
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highest laser power, the energy is
almost stable, because the plasma
becomes transparent to the laser beam

Vol.17, No.42, PP. 125-135

shielding occurs when the plasma
itself reduces the transmission of the
laser peak power along the beam

that protects the target. Plasma path.
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Fig.7 (a, b, ¢): Variation of n, and T, of plasma emitted from SnO,: ZnO target at different
ratio using laser with different energy.
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Tables from 1 to 3 shows the
calculated (Debye length (Ap) electron
density (n.) and electron temperature
(Te) by using Eq.(3) and plasma
frequency (f,) by using Eq.(4) for
Zn0:Sn0; at different laser energies).

Muna A. Essa and Kadhim A. Aadim

All calculated plasma parameters (fpand
and Ap). It shows that plasma frequency
(f,) increase with the energy of laser
because it's proportional with electron
density (n.).

Table 1: Plasma parameters for ZnO: SnO, at X=0.2 with different laser energies.

E(mJ) | Te(eV) | FWHM (nm) | n10"(cm™) f,(Hz) 10" | A *107 (cm)
500 0.471 1.900 2.069 12.917 3.544
600 0.479 2.000 2.178 13.253 3.485
700 0.489 2.100 2.287 13.580 3.435
800 0.504 2.200 2.396 13.900 3.408
900 0.503 2.200 2.396 13.900 3.403

Table 2: Plasma parameters for Zn0:Sn0O, at X=0.4 with different laser energies.

E(mJ) FWHM (nm) Te (eV) n. (cm™) f, (Hz) Ap (cm)
500 1.90 0.504 2.07E+18 1.3E+13 3.7E-07
600 2.00 0.566 2.18E+18 1.3E+13 3.8E-07
700 2.10 0.555 2.29E+18 1.4E+13 3.7E-07
800 2.20 0.588 2.40E+18 1.4E+13 3.7E-07
900 2.20 0.607 2.40E+18 1.4E+13 3.7E-07

Table 3: Plasma parameters for ZnO: SnO2 at X=0.6 with different laser energies.

E(mJ) | Te(eV) | FWHM (nm) | n.10"(cm™) f, (Hz) *10" Ap *107 (cm)
500 0.470 1.900 2.069 12.917 3.542
600 0.489 2.000 2.178 13.253 3.521
700 0.489 2.150 2.341 13.741 3.396
800 0.502 2.250 2.450 14.057 3.361
900 0.502 2.300 2.505 14.212 3.325
Conclusions the laser energy pulse. Plasma

The intensity of the spectral lines of
the laser-induced plasma emission
showed a strong dependence on the
surrounding conditions. It was found
that the intensity at different laser peak
powers increases with the laser peak
energy and then decreases when the
power continues to increase. The
interaction of laser beams with metal
targets is a very useful way to produce
plasma columns that consist of highly
concentrated electrons, ions and neutral
molecules. For the air environment,
laser-induced plasma spectra were
found to show strong spectral lines and
increase their intensity while increasing
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parameters such as (electron density,
electron temperature, number of
particles in Debye sphere, plasma
frequency and Debye length) are found
that laser energy is strongly affected.
The results showed that the values of
(Np, Ap and T.) were increased in case
of laser induced plasma in air while the
values of (f, and n.) were decreased in
laser induced plasma air
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