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Abstract Key words 
     This work reports the study of heat treatment effect on the 
structural, morphological, optical and electrical properties of poly [3-
hexylthiophene] and its blend with [6,6]-phenyl C61 butyric acid 
methyl ester (P3HT:PC61BM). X-ray diffraction (XRD) 
measurements show that the crystallinity of the films increased with 
annealing. The evaluation of surface roughness and morphology was 
investigated using atomic force microscope (AFM), and field 
emission scanning microscope (FESEM). The optical properties were 
emphasized a strong optical absorption of P3HT compared with the 
blend. Hall effect measurement was used to study the electrical 
properties which revealed there is an increase in the electrical 
conductivity and Hall mobility of the p-type P3HT and its blend with 
heat treatment. 
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 P3HT:PCBMومزيج    P3HTاستقصاء تأثير المعاملة الحرارية بعد الترسيب على خصائص

  عبير محمد مسلم و اقبال سھام ناجي

  قسم الفيزياء، كلية العلوم، جامعة بغداد 

 الخلاصة
ھذا العمل يوضح دراسة تأثير المعاملة الحرارية على الخصائص التركيبية ،السطحية، البصѧѧرية والكھربائيѧѧة      

. أوضѧѧحت (P3HT:PCBM)ومزيجه مع حامض البيѧѧوترك مثيѧѧل اسѧѧتر  (P3HT)لمركب الھكساثيافين المتعدد 
قياسѧѧات حيѧѧود الأشѧѧعة السѧѧينية بѧѧان تبلѧѧور الأغشѧѧية ازداد مѧѧع التلѧѧدين. وتѧѧم استقصѧѧاء خشѧѧونة وتضѧѧاريس  السѧѧطح 

. الخصѧѧائص البصѧѧرية (FESEM)والمجھر الماسѧѧح ذي المجѧѧال الباعѧѧث  (AFM)باستخدام مجھر القوى الذرية 
قياسѧѧات تѧѧأثير ھѧѧول تѧѧم اسѧѧتخدامه لدراسѧѧة مقارنѧѧة مѧѧع المѧѧزيج. P3HT أوضحت امتصاص بصري قѧѧوي لمركѧѧب 

وكѧѧذلك  pنѧѧوع  P3HTالخصائص الكھربائية والتي أوضحت بان التوصѧѧيلية الكھربائيѧѧة وتحركيѧѧه ھѧѧول للمركѧѧب 
  خليطه تزداد مع المعاملة الحرارية. 

 
Introduction  
     The organic photovoltaics are 
promising alternatives to their 
inorganic counterparts [1]. They offer 
many practical advantages which that 
they can be simply prepared by 
solution processing techniques which 
in turn offer low fabrication cost and 
the potential to deposit on flexible 
substrates and they also have high 
absorption coefficients that offer  
possibility for production of very thin 

solar cells [2, 3]. But beside the 
advantages, it has disadvantages. The 
main one's is the low efficiency, low 
stability and low strength [3]. The most 
efficient conjugated polymer 
heterojunction devices use regioregular 
poly (3-hexylthiophene) (P3HT) as the 
electron donor due to its higher hole 
mobility 10-4 to 10-2 cm2 V-1 s-1 and 
lower band gap [4, 5]. Also it is   an 
important class of π-conjugation 
polymers which can be ordered in 
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three dimensions: the conformational 
ordering along the backbone,                
π-stacking of flat polymer chains and 
lamellar stacking between chains. All 
these features lead to the excellent 
electrical properties of this material 
[6]. Usually the polymer, electron 
donor, is blended with the electron 
acceptor, (6, 6)-phenyl-C61-butyric 
acid methyl ester (PCBM) [7], due to 
its high electron affinity, high 
solubility in organic solvents, and 
better electron mobility as compared to 
C60 [8, 9]. In P3HT:PCBM 
heterojunction devices, the ultrafast 
photoinduced charge transfer of the 
electron through PCBM and hole 
transfer via the backbone of P3HT 
polymer networks produce 
considerable solar energy conversion 
efficiency. In fact, efficiencies 
approach 5–6% [10, 11].  
     Thermal annealing have proved 
critical for optimizing the 
nanomorphology of a BHJ. Even 
though, significant improvements in 
PCE has been observed in the 
optimally annealed devices, precise 
control has to be imposed due to the 
sensitivity of the device performance 
towards annealing conditions [12]. The 
Selection of the solvent is also very 
important for obtaining good 
morphology of the films and stability 
of the photovoltaic device [13]. 
     In this work, we have studied the 
effect of thermal annealing on the 
structural, morphological, and optical 
properties of P3HT and 
P3HT:PC61BM blend thin films. 
 
Experimental procedure 
     Poly (3-hexylthiophene) (P3HT) 
with a molecular weight of            
34.000 gm/mol and [6,6]-phenyl-C61- 
butyric acid methyl ester (PCBM) were 
purchased from American Dye Source, 
Inc. and used without further 
purification. The solution of P3HT is 
made by dissolving 60mg of  P3HT 

polymer powder in 2 ml of 
1,2Dichlorobenzene (C6H4CI2) with a 
molecular weight of 147.00 gm/mol  
which is a colorless to pale yellow 
liquid with a pleasant odor. The blend 
solution was also prepared by mixing 
30mg of P3HT and 30mg of PCBM 
(1:1) weight ratio and dissolving in 
2ml of 1,2Dichlorobenzene solvent. 
The two solutions were sonicated for 
60 min in ultrasonic bath followed by 
hot plate stirring at 50oC for 2 hours 
and 18 hours without heating to obtain 
homogenous solutions. Finally the both 
solutions were filtered by PTFE filter 
with a pore size of 0.45 µm to remove 
any un dissolve material and got 
homogenous solutions. Glass 
substrates were cleaned in an 
ultrasonic bath by using acetone and 
isopropanol then rinsed with deionized 
water and dried with nitrogen gas.  
The P3HT and P3HT:PCBM blend 
thin films were spun on substrates by 
spin coating system (ACE200) with 
speed of 1000 rpm/S for 30 second. 
The thickness of pristine and blend 
films were measured by cross section 
method which was about (100, and 150 
nm) respectively. The films were 
thermally annealed at different 
annealing temperatures (75, 100, 125, 
and 150oC). All experimental 
processes were carried out in air 
without glove box. The microstructure 
of films were recorded at room 
temperature using X-ray diffraction 
system (SHIMADZU,XRD-6000) with 
CuKɑ radiation(λ=0.154 nm, current 
30 mA, voltage 40 kV).The 
morphological features for P3HT and 
P3HT:PCBM blend were performed by 
using field emission scanning electron 
microscopy (FE-SEM) model (Hitachi 
4700 field emission microscope),and 
atomic force microscopy(CSPM-
AA3000 contact mode spectrometer, 
Angstrom Advanced Inc. Company). 
The optical properties were measured 
using UV-Visible SP-8001 
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contact electrodes, charge carrier 
mobility’s in conjugated polymers will 
be diminished and result in smaller 
photocurrent available necessary for 
efficient device operation. It should be 
noticed that Wobkenberg et al. [23], 
have already shown that C61 fullerenes 
combined with regioregular polymers 
can have comparable electron 
mobilities. So, small grain features 
with enhanced crystallinity in 
P3HT:PC61BM  nanocomposite films 
might offer better energy conversion 

efficiency of photoinduced carriers. 
This suggests that there is a 
thermodynamic driving force for the 
sample to reorganize towards a more 
stable equilibrium and thus to phase 
separate. However, excessive 
roughness makes phase segregation 
excessively comparable to the exciton 
diffusion length, which leads to the 
reduced charge segregation and device 
efficiencies. Similar results were also 
observed by Li et al. [24]. 

 

 
Fig. 3: AFM images of spin coated P3HT thin films at (a) as-deposited thin film                 
(b) Ta=100 °C (c) Ta=150 °C. 
 
 
 
 
 
 
 

(a) 

(b) 

(c) 
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Fig. 4: AFM images of P3HT:PC61BM thin films at (a) as-deposited thin film (b)Ta=100 °C 
(c) Ta=150 °C. 
 
Table 2: Grain size, Roughness average, and root mean square of as deposited and 
annealed films. 

Sample Ta (°C) Grain size 
(nm)

Roughness 
average (nm)

Root mean 
square (nm) 

 
P3HT 

R.T 68.62 0.63 0.731 
100 84.34 0.324 0.374 
150 114.25 1.24 1.43 

P3HT:PC61BM 
 

R.T 70.04 0.26 0.299 
100 64.02 0.387 0.447 
150 97.86 0.517 0.597 

 
     Fig.5(a) display the scanning 
electron microscope images of pristine 
P3HT film deposited on glass substrate 
at room temperature by spin coating 
with different magnification. These 
images show a smooth and 
homogenous morphology with small 
cubic crystals. While Fig.5(b) shows 
the morphology of P3HT:PC61BM 
blend film. It can be notice the surface 
has revealed some spherical- like 
features besides the cubic crystals 
which were attributed to the formation 
of PCBM aggregates. Such 

aggregation could form due to phase 
separation. These spherical-like nano 
scale PCBM aggregations could reduce 
the interface between P3HT and 
PCBM and therefore reduce the 
connected domains. In this case most 
of the generated charges will 
recombine before reaching the 
electrodes and will not contribute to 
the photocurrent.   
Similar aggregations of PCBM in 
P3HT: PCBM film were observed by 
other researchers [25].   
 

(b) 

(c)

(a)
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Fig. 5: FESEM pictures of (a) P3HT, (b)P3HT:PC61BM film at room temperature. 

 
     Fig.6(a) shows the UV-vis 
absorption spectra of P3HT thin films 
at different annealing temperature. It 
can be observed that the P3HT film 
exhibits strong absorption in the visible 
wavelength range from 400-650 nm. 
Generally, pristine P3HT and annealed 
films at different annealing 
temperature shows a maximum 
absorption around the wavelength of 
555nm and a shoulder peak around the 
wavelength of 515 nm. These bands 
absorption can be attributed to the π-π* 
electronic transition of the P3HT 
conjugated backbone system [26]. 
While the shoulder peak around 610 

nm could be related to the interchain 
stacking of P3HT molecules which 
suggested an enhancement in the chain 
ordering of the polymer [27]. It can 
also observed that there is no shift in 
the absorption peaks when the films 
are heat treated at different annealing 
temperature. But only a significant 
increase in the absorption intensity 
with increasing the annealing 
temperature and reach a maximum 
value for sample annealed at 100 °C 
which increase from 61 % at room 
temperature to 69 %. Which is 
indicated an increase in crystalline 
ordering of the polymer domain [28]. 

 

 
Fig. 6: The absorbance spectra of (a) P3HT and (b) P3HT:PC61BM thin films at different 
annealing temperatures. 

(a) 

(b)
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     When P3HT is blended With 
PC61BM, as shown in Fig.6(b) the 
absorption spectra of the blend has a 
broad peak which originates from 
P3HT and ranges from 450 to 650 nm. 
The sharp peak which  is generated 
from PC61BM and located at 330 nm 
represent prominent peak in the 
polymer (P3HT) which improve the     
π-π stacking of the polymer chains. 
The spectral region associated with 
P3HT absorption shows three 
absorption bands, the maximum 
absorption peak around the wavelength 
of 550 nm which is attributed to the     
π-π* electronic transition within the 
P3HT main polymer [25]. And two 
shoulders peaks at 515 nm and the 
second at 610 nm is attributed to the 
absorption of the interchain stacking of 
P3HT and which suggest an 
improvement in the ordering of the 
chain [29]. It can be clearly seen that 
the P3HT peaks remain unchanged 
before and after heat treatment, 
whereas in the region of PCBM 
absorption a slight red shift from      
295 nm to 330 nm becomes evident. 
     However, all figures show a 
reduction in absorption intensity of the 
blend compared with the P3HT before 
and after annealing .This reduction in 
intensities might be due to a tighter 
chain which produced by twisting of 
the polymer backbone or due to broken 
conjugation in the presence of C61, 
thereby causing in a segments with a 
shorter conjugation length and weaker 
interchain interaction. This result can  
also be explained by a change in the 
stacking conformation of the P3HT 

structure from  high crystallinity to 
lower crystallinity , and a reduction of 
intraplane and interplane stacking, 
which causes a poor π-π* transition 
and lower absorbance. This reduction 
in intensities was also observed in the 
literature [30].  
     Fig.7(a) shows the optical energy 
gap of as deposited  and annealed 
P3HT at different annealing 
temperature. It can be observed that 
there is a reduce in optical energy gap 
of P3HTwhen the sample are heat 
treated. This results of decreasing in 
optical energy gap in P3HT films when 
applying heat to the samples has also 
observed by other researchers Xiaoyin 
et al. [31]. Thus, the annealing process 
could be a method in reducing the 
optical energy gap of P3HT. 
     Fig.7(b) shows the variation of 
energy gap when P3HT is blended 
with PC61BM at different annealing 
temperature. It can be observed that the 
optical energy gap decreases after heat 
treatment to minimum value (1.84 eV) 
at 100 °C, and return to its origin      
value (1.9 eV) when the annealing 
temperature equal to 150 °C.  While the 
energy gap of PCBM was 3.2 eV. 
     The reduction in energy gap is one 
of the crucial factors to obtain a good 
performance in the polymeric solar 
cells, in which that many photons can 
be absorbed in the active layer to 
generate charge carriers [32, 33].  
      Table 3 shows all the optical 
parameters of P3HT and its blend thin 
films at different annealing 
temperatures. 
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Fig.7: (αhv)2 versus photon energy (hv) of incident radiation for (a) P3HT and (b) 
P3HT:PC61BM thin films at different annealing temperatures. 
 
Table 3: The optical constants of P3HT and P3HT:PC61BM thin films with different 
annealing temperatures at λ=550 nm. 

εi εr k n α(cm-1) *104 Eg
opt(eV) Temp. 

(oC) Sample 

2.438 3.585 0.612 1.990 14.0 1.90 25 

P3HT 
2.075 1.778 0.690 1.501 15.8 1.88 75 
1.801 1.137 0.704 1.278 16.1 1.86 100 
2.242 2.350 0.670 1.673 15.3 1.87 125 
2.433 3.535 0.615 1.978 15.3 1.89 150 
1.356 6.311 0.268 2.526 6.13 1.90 25 

P3HT:PC61BM 
1.449 6.415 0.284 2.548 6.50 1.88 75 
1.635 6.545 0.317 2.578 7.25 1.84 100 
1.529 6.483 0.298 2.563 6.81 1.85 125 
1.3176.261 0.2612.5155.981.90150 

 
     In order to determine the electrical 
conductivity, resistivity, type and 
concentration of the carrier, and hall 
mobility, Hall Effect is used. 
     Table 4 illustrates the main 
parameters estimated from hall effect 
measurements for P3HT thin films 
deposited at different annealing 
temperature 100 and 150 °C. the result 
showed that all films were P type. It 
can observe that the conductivity and 
hall mobility  are increase as the 
annealing temperature increases. since 
the mobility is a function of degree of 
crystallinity, crystallite size and phase 
domain size which are called the 
morphological variables, it can be 
concluded that the enhancement of 
mobility is attributed to the 

improvement in the crystallinity and 
morphology as observed in XRD, SEM 
and AFM analysis [34]. while the 
carriers concentration  are decrease 
with heat treatment of the sample. 
     For P3HT blending with PC61BM, it 
can be observed that  there is an 
increase in the conductivity and the 
hall mobility of the blend with the 
increase of annealing temperature.     
Such an increase, may be attributed to 
enhanced polymer ordering. while the 
carriers concentration decrease. The 
blend films  has higher conductivity 
and carrier mobility compared with the 
P3HT films.  
     It is assumed that the improved 
electrical properties of the blends  are 
induced by smaller polymer and 
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fulleren clusters formed during spin 
coating, which lead to the development 
of continuous pathways for charge 
carriers and an increase in the 
interfacial area that inhanced the 
exciton dissociation [16].  
     Motaung et al. [16] reported that 
there is an increase in the Hall mobility 
and coductivity of P3HT and blened 

films after short  time annealing. 
especially in the case of the blends. 
since fullerene crystallizes out of the 
polymer matrix under optimized 
annealing conditions  ,leaving the 
polymer chains behind that will 
endeavour to recoganize and obtain an 
obtimized morphology. 

 
Table 4: The electrical measurements of pristine P3HT and P3HT:PC61BM thin films at 
different annealing temperatures. 

sample Ta (°C ) 
 

type σ x 10 -5

(Ω.cm)-1 
n *1011

(cm-1) 
μ  *102 

(cm2/V.s) 

P3HT 
 
 

R.T P 0.3409 3.485 0.6105 
100 °C P 0.4242 3.257 0.8130 

150 °C p 0.6929 0.4555 9.495 

P3HT:PC61B
M 
 

R.T P 0.3799 46.73 0.05075 
100 °C n 0.3883 3.403 0.7123 

150 °C P 0.4693 39.31 0.07452 

 
Conclusions 
     The post deposition heat treatment 
has induced significant changes in the 
properties of the thin films, where the 
ability to control the heat treatment to 
obtain enhanced crystallinity and 
optimal morphology properties and 
increases the electrical conductivity to 
improve the efficiency of the organic 
solar cell. The heat treatment improves 
the crystallinity, and the natural 
tendency of regioregular P3HT to 
crystallize is disturbed by addition of 
PCBM. AFM analysis revealed a 
crystallite-like surface morphology 
with crystallite size in the nanometer 
rang. The UV-Vis results show that the 
best annealing temperature for higher 
absorbance was 100oC for both P3HT 
and its blend. Hall Effect indicates an 
increase in the conductivity and 
mobility with increasing the annealing 
temperature. These changes were 
explained in terms of the formation of 
polymer crystallites upon annealing. 
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