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Abstract Key words 
     Using shell model and self-consistent Hartree–Fock calculations 
nuclear structure of 24Mg nucleus has been investigated. In particular, 
elastic and inelastic electron scattering form factors and transition 
probabilities are calculated for positive and negative low-lying states. 
For this purpose, two different shell model spaces have been used. 
The first one is the sd model space for positive parity state and the 
second one is sdpf model space for negative parity states. For all 
selected excited states, Skyrme interactions are adopted to generate 
from them a one-body potential in Hartrre-Fock theory to calculate 
the single-particle matrix elements and compared with those of the 
harmonic oscillator (HO) and Woods-Saxon (WS) single-particle 
potentials.  
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عن  24Mgالتعددية القطبية الكھرومغناطيسية لحالات التكافؤ االموجبة والسالبة في نواة 

 طريق الاستطارة الإلكترونية المرنة وغير المرنة

 نوري صباح مانع وعلي عبد اللطيف كريم

  ، بغداد، العراقجامعة بغداد ،العلومكلية ، قسم الفيزياء 

   الخلاصة
على  24Mg. باستخدام نموذج القشرة وحسابات ھارتري فوك المتسقة ذاتيا، تم التحقيق في البنية النووية لنواة     
الخصوص يتم حساب عوامل التشكل لاستطارة الالكترون المرنة وغير المرنة واحتمالات الانتقال  هوج

لمستويات   sdالاول   .تم استخدام نموذجين مختلفين لانموذج فضاء القشرة لمستويات التماثل الموجبة والسالبة.
ت المثارة المختارة يتم اعتماد تفاعلات لمستويات التماثل السالبة. لجميع الحالا sdpfالتماثل الموجبة والثاني 

سكيرم لتوليد جھد الجسيم المنفرد في نظرية ھارتري فوك لحساب عناصر مصفوفة الجسيم المنفرد. قورنت 
  الحسابات مع نتائج دوال الموجة للجسيم المنفرد لجھد المتذبذب التوافقي وجھد وود ساكسون. 

  
Introduction 
     The study of nuclear structure is 
usually performed with two major 
approaches: the first is based on the 
self-consistent mean-field (SCMF) 
method [1], which rests on the 
assumption that in the first 
approximation, the nucleons can be 
described as evolving in a mean 
potential, which emerges from the 
underlying effective nuclear 
interaction. The nucleus is thus 

described as a system of independent 
nucleons, which are dressed by their 
averaged interaction with the other 
particles. The second approach, known 
as interacting shell model (SM) [2], 
starts from a given set of single-
particle states and directly tackles the 
correlations between the nucleons in a 
truncated many-body model space.  
     The SM allows for configuration 
mixing (CM) beyond the mean field 
(MF) [3], so one can take for the MF a 
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standard phenomenological single-
particle model, but then performs a 
CM calculation involving all many-
body states that can be constructed 
using a more or less broad band of 
single nucleon states around the Fermi 
energy [4].  
     In the present work, we still 
working by our researches [5] in 
applying the SM and HF approaches in 
calculating the inelastic electron 
scattering form factors for positive and 
negative parity states in 24Mg nucleus. 
Johnston and Drake [6] studied the 
excited-states of 24Mg with excitation 
energies less than 14.0 MeV using 
inelastic electron scattering in the 
momentum transfer range 0.4 to     
1.14 fm-1. Zarek et al. [7] measured the 
electromagnetic form factors for the 
stronger transitions to negative-parity 
states in 24Mg for electron energies 90 
-280 MeV. Marinelli and Moreira [8] 
evaluated longitudinal and transverse 
electron scattering form factors for the 
2+ state at 1.37 MeV of the 24Mg 
nucleus. The Hartree Fock with 
different approaches were used for the 
transverse E2 form factor for 
calculations. The results are discussed 
and compared with a recent 
measurement performed for 180˚ 
electrons scattered from this state. 
Carvalho and Rowe [9] calculated 
transverse electron scattering form 
factors for 0+→2+ excitations in 24Mg 
nucleus. In 24Mg, 2+ state is the first 
excited, the form factors are computed 
microscopically. Radhi and Bouchebak 
[10] discussed inelastic electron 
scattering to 2+ and 4+ states for 24Mg 
nucleus by taking into account higher 
energy configurations outside the sd 
shell.  
     The first one is the sd-SM space 
matrix elements for positive parity 
states and hence, we present results for 
new USD-type Hamiltonians called 
USDE, the USD Hamiltonian [4,11] 
has provided realistic sd-shell wave 

functions for use in nuclear structure 
models, and nuclear spectroscopy. The 
calculations second model space were 
done in the sdpf SM space using the 
WBP Hamiltonian [12], which is 
adopted for negative parity states, 1-, 3- 
and 5- for this model, the orbits ls1/2, 
lp3/2, and lp1/2 are filled (inert 16O 
nucleus core) and the active (valence) 
particles were restricted to 1d5/2, 1d3/2, 
2s1/2 1f7/2, 1f5/2, 2p3/2, and 2p1/2 orbits 
with the SDPFMU effective 
Hamiltonians [12]. 
     The aim of nuclear MF theories is 
to describe self-bound nuclei in their 
intrinsic frame where wave-functions 
are localized. A possible description of 
a self-bound localized system in terms 
of Slater determinants could be 
constructed from single particle wave-
functions of a HO or a WS potential. 
The most suitable framework is that of 
SCMF [13]. The Skyrme interaction is 
the most widely used interaction in 
nuclear structure calculations. The 
reason is simple: it is a zero-range (but 
momentum dependent) interaction that 
greatly simplifies calculations in 
many-body systems. So, for all excited 
states, Skyrme interactions are adopted 
to generate from them a one-body 
potential in Hartrre-Fock theory to 
calculate the single-particle matrix 
elements. The single-particle matrix 
elements have been calculated with 
Skyrme-Hartree-Fock (SHF) potential 
with four different parameterizations in 
addition to realistic Wood-Saxon (WS) 
and harmonic oscillator (HO) 
potentials for comparison. The SHF is 
a MF potential. One of the main goals 
of the present calculations is to 
determine the extent the ability of SM 
calculations for describing the 
collective feature, so the obtained form 
factors from the pure Tassie model 
transition densities will be compared 
with results given by the model of 
Bohr-Mottelson. 
 



Iraqi Journal of Physics, 2019                                                                           Vol.17, No.42, PP. 27-41 
 

 29

Theory and methodology 
     Electron scattering nuclear form 
factors for inelastic scattering between 
an initial (i) and final (f) state or for 
elastic scattering (i = f) are denoted by 
the longitudinal Coulomb form factor, 

),,,( ifqCF   the transverse electric 

form factor ),,,( ifqEF   and the 

transverse magnetic form factor  

),,,( ifqMF   where   is the 

multipolarity [14]. The last two types 
of form factors can be divided into the 
components according to the 
convection currents c  (due to the 
orbital motion of the nucleons) and the 
magnetization currents m  (due to the 
intrinsic magnetic moments of the 
nucleons), respectively [15]. 

 
),,,(),,,(),,,( ifqmEFifqcEFifqEF                                            (1) 

),,,(),,,(),,,( ifqmMFifqcMFifqMF                         (2) 

 
The final transition form factor 
expression is given by [16] 
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where X stands for C, Mc, Mm, Ec and 

Em. The factor 2/1)12( iJ arises on 

going from the reduced matrix element 
to the matrix element summed over 
final m substates and averaged over 
initial m substates. The normalization 





 Z/)4( 2/1 is chosen to make F(C0,q 

=0, elastic) =1, as noted above. The 
term fc.m is the centre of mass form 
factor that corrects for the lack of 
translational invariance in shell model 
wave functions.  

)4(
.

22

exp)( Aqb
mc qf                  (4)     

where b is the harmonic oscillator 
length parameter and A is the mass 
number. 
gfs(Xx, q, tz) are the equivalent q-
dependent form factors for free 
nucleons, g (Xx, tz) are the free nucleon 
g factors, given by g(Mc, tz) = g(Ec, tz) 
= gl(tz) and g(Mm, tz) = g(Em, tz) = 
gs(tz), where gl and gs are the free-
nucleon g factors, and tz is proton or 
neutron isospin.  
Multiparticle form factors

),,,,( zz
tTjjqXO   are given by [17, 

18]: 
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zzz
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
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where ),,,,( ztjjqXo   is single-

particle matrix elements and   is 
multipolarity, the single particle states 

(n l j) are denoted by j. the 
),,,,,(

zz
tTifjjOBTD  in proton-

neutron formalism is given by [16]: 
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where Tz, is the total nucleus isospin, tz 
=1/2 for a neutron and tz=-1/2 for a 

proton, while 
,ja  and ja 

~  are the 

creation and destruction operators, 
respectively. 
     For central potential, we use 
Skyrme potential; it is a two-body 
interaction. One may generate from it a 
one-body potential in in Hartrre-Fock 

theory, as it is done in the codes used. 
It is supposed to provide the mean field 
due to all the nucleons which compose 
the nucleus and approximate the 
realistic nucleon-nucleon (and 
nucleon-nucleon-nucleon) forces. 
Skyrme potential VSkyrme can be written 
as [19]  
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which are the relative momentum 
operators which operate on the wave 
functions to the right and to the left.  

P̂  is the spin-exchange operator given 

by 

)ˆ.ˆ1(
2

1ˆ
21




P                       (10)                                                                                                           

     The momentum-dependent terms 
are introduced to take into account the 
effect of the finite-range force and are 
important for the surface        
properties [20].  
     The method starts from a SM, and 
self-consistent Hartree-Fock mean-
field calculation with Skyrme 
interactions. The calculations are 

performed with the force SLy4 [21], 
SkXcsb [22], SkXta [23] and SkXs25 
parametrizations [24] which is a 
suitable representative of the Skyrme 
forces, in addition to realistic WS, and 
harmonic oscillator HO [16] potentials 
for comparison. The single-particle 
form factors ),,,,(

z
tjjqXo  can be 

reformulated into a concise and 
uniform notation consisting of 
integrals over the radial coordinate of 
spherical Bessel functions )(qrj


multiplied by single particle transition 
densities ),,( jjr   [25]: 
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rdqrjqtgtjjqmEo
zNzsz tjjrmE 2)()(),,,,( ),,,,( 

                       (15) 

 
where    

is nuclear magneton with  proton 

mass. 

The transition density distribution, can 
be written as follows [26]: 

),,,(),,,(),,,( jjrjjrjjr coremd                                            (16)  

 
According to valence model, the 
transition density is proportional to the 

MS transition density, of the point 
proton: 

),,,,(),,,,(),,,,(
zzz

tjjrtjjrtjjr Nmdcore                     (17)  

 
where N is a proportionality constant to 
be determined in analogy with matrix 
elements of the gamma-ray transition 

operator [27, 25], and are related to   
the effective charge. The total 
transition density becomes: 

),,,,(),,,,(),,,,( njjrpjjrtjjr
z
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),,,,(),,,,()1( njjrpjjr eeee np                                                       (18)                              

),,,,(),,,,(),,,,( )()( njjrpjjrtjjr nepe effeffz
                 (19) 

 
The quantity pe represents the effect 

of virtual excitation of core protons, 
and ne represents the effect of the of 
virtual excitation   of core   protons  by 

 the valance neutrons. The total 
longitudinal transition density is 
calculated using Tassie [28, 29], and 
Bohr-Mottelson (B-M) models [29] 
respectively as:  
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The reduced transition probability is 
given by [16]:  
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where                   )1(MB  is in units of 

2
N

u , )2(EB  is in units of 42 fme , )2(MB

is in units of 22 fmu
N

, and )1(EB  is in 

units of 22 fme . 

Results and discussion 
     In the present work, using the SM 
code NuShellX@MSU [30], the 

OBDM elements have been calculated. 
It is a set of wrapper codes written by 
Alex Brown that use data files for 
model spaces and Hamiltonians to 
generate input for NuShellX. 
NuShellX is a set of computer codes 
written by Bill Rae [31] that are used 
to obtain exact energies, eigenvectors 
and spectroscopic overlaps for low-
lying states in shell model Hamiltonian 
matrix calculations with very large 
basis dimensions. The OBDM 
elements are then used to calculate the 
matrix elements of Cλ, Eλ and Mλ 
operators. As we mentioned 

1051.02  cme pN  fm.e

pm

/ .xk E c 
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previously. For all electric transitions 
(λ > 0), the standard effective charges 
are used, using the Tassie, and B-M 
model for CP [26]. For magnetic 
transitions, free g factors are used.  In 
the present duty calculations is to 
determine the extent the ability of SM 
calculations for describing the 
collective feature, so the obtained form 
factors from the pure Tassie-model are 
compared with results the model of B-
M. The Coulomb form factors 
calculated by using CP effects 
according to valance, Tassie and B-M 
models, but the transverse form factors 
calculated by using valance model. 
 
A. Elastic electron scattering form 
factors of 24Mg nucleus 
     In the present work, we wish to 
indicate the possibility of testing SM 
effective interactions by means of 

elastic electron scattering calculations. 
24Mg nucleus is chosen for this 
position in the lower of the 2s-1d shell 
the numbers of active particles outside 
the 16O core are eight. Extensive elastic 
electron scattering data are available 
for this nucleus [32]. Sd-SM space 
calculations were performed for this 
nucleus using the USDE interactions. 
Furthermore, the calculations with 
Skyrme parametrizations are compared 
with those of the HO and WS single-
particle potentials. The oscillator size 
parameter b=1.82fm chosen to 
reproduce the measured rms charge 
radius.  The calculated proton, neutron, 
mass, and charge radii for 24Mg using 
different single-particle potentials are 
given in Table 1 along with the 
experimental data [33]. The concord 
with the experimental values is seen to 
be good.  

 
Table 1: Rms radii (fm) for 24Mg nucleus using different single- particle potentials. 

Potential Proton Neutron Mass Charge Charge 
Exp.

SLy4 2.950 2.904 2.927 3.032 3.0570 
[33]

SkXcsb 
SKXta 

SKXs25 

2.930
2.978 
2.998

2.893
2.943 
2.948

2.912
2.961
2.973

3.014
3.060 
3.079

 

HO 2.972 2.972 2.972 3.054  
WS 3.028 2.965 2.997 3.109  

     
      The elastic charge C0 form factors 
of 24Mg are calculated and the results 
are presented in Fig.1. From this 
figure, one can see that the theoretical 
Coulomb factors from the different 
nuclear single-particle potentials give 
the calculations of the sd-SM space 

with B-M model present good 
agreements with the experimental data 
[32] especially in the range of q from 
0.5 up to 2.1 fm-1. However, the result 
of WS potential coincides with the 
experimental data better in this range.  
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Fig. 1: Theoretical elastic longitudinal form factors for the 0+, using HO, WS potential and 
SLy4, SkXcsb, SKXta and SKXs25 parametrizations, compared with the experimental data 
taken from Ref. [32]. 
  
B. The inelastic electron scattering 
form factors of 24Mg nucleus  
1. Positive parity states 
     Longitudinal electron scattering 
form factors have been measured for 
isoscalar transitions to T = 0 levels in 
24Mg nucleus from the ground-state to 
the states at 1.37 MeV (2+), 5.24 MeV 
(3+) and 6.01 MeV (4+) states. 
Calculated inelastic longitudinal 
Coulomb C2 form factors for the first 
2+ at 1.37 MeV state are displayed in 
Fig.2 represent the calculation of the 
result of the various models. For 
comparison, we also show the SM 
results obtained in the restricted sd-
shell single-particle predictions with 
various nuclear single-particle 
potentials. The g factor of the first-
excited state in the N = Z nucleus 24Mg 
[33] based on hyperfine fields of 

hydrogen like Mg ions. By the use of 
these well-defined hyperfine fields, 
together with efficient particle and γ-
ray detection, the new measurement 
achieves the accuracy and precision 
needed to test the predicted departures 
from g= 0.5 [34]. In general, the 
calculated longitudinal nuclear 
coulomb form factor shows a good 
agreement with the experimental data 
of the transition from the ground-state 
to the first excited-state   =21

+ with 
1.37 MeV state for q>0.3 fm-1. At low 
q the results go remarkable well with 
experimental data [32] except there is 
an overestimation in the prediction of 
the position of first diffraction 
minimum in comparing with 
experimental data.  
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Fig. 2: Theoretical inelastic longitudinal form factors for the first 2+, 1.37 MeV state using 
different single particle potential compared with the experimental data taken from             
Ref. [32]. 
 
     In this work we have undertaken to 
analyse these results in a framework 
transverse form factors, the extracted 
squared transverse E2 form factors 
were described with SM calculation so 
that effects of different models over 
the structure of this state were taken 
into account. This kind of analysis 
provides unique information about this 
nucleus. In particular, the first level 21

+ 
at 1.37 MeV was measured at the 
effective q between 0.87 and 2.07 fm-1 
are shown in Fig.3, measurements 
carried out at this level yielded 
accurate knowledge of form factors up 
to 3 fm-1, these are single particle 
calculations has been used. In 
prevalent, nuclear single-particle 

potentials resemble each other. For all 
calculations, the resulting nuclear 
single-particle potentials lie below the 
data [27]. However, the calculated 
transverse form factors for this 
potentials are found to be in poor 
concord with the experiments. 
     In Fig. 4, we also plotted 
longitudinal C2 form factor results for 
the 22

+ at 4.23 state in 24Mg. The 
available data of this transition are 
restricted for small region of 
momentum transfer (q<1.9 fm-1). In the 
first maximum, a best coincidence for 
the form factors is obtained between 
the calculation and the experimental 
data [35]. 
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Fig.3: Theoretical transverse form factors for the first 2+, 1.37 MeV state using different 
single particle potential compared with the experimental data taken from Ref. [27]. 
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Fig.4: Theoretical longitudinal form factors for the second 22

+, 4.23 MeV state using 
different single particle potential compared with the experimental data taken from            
Ref. [35]. 
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     In Fig.5 the calculated results for 
inelastic transverse form factors of 
24Mg nucleus under study are plotted 
versus the q and compared with those 
of experimental results for 3+ at      
5.24 MeV state the total contribution is 
represented using different single 
particle potentials and obtained by 
taking valance model assuming a M3 
transition and the best fit obtained is 
shown with the data in this Figure. The 
experimental data, shown by circles, 
are taken from Ref. [36].        
      The inelastic longitudinal C4 form 

factors for the states 4.12 MeV and 
6.01 MeV in 24Mg are displayed in 
Figs. 6 and 7. It can be seen that the 
calculated results using different 
models are a satisfactory with the 
experimental data for the region of 
momentum transfer q ≤ 3 fm-1, the 
obtained results for the longitudinal C4 
form factors become in a good 
agreement with the experimental data 
[7, 32] throughout the whole range of q 
and from these figures, one can see 
that the coulomb form factors 
calculated are very close to each other. 
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Fig.5: Theoretical transverse form factors for the first 3+, 5.24 MeV state using different 
single particle potential compared with the experimental data taken from Ref. [36]. 
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 Fig.6: Theoretical longitudinal form factors for the first 4+, 4.12 MeV state using different 

single particle potential compared with the experimental data taken from Ref. [33]. 
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Fig.7: Theoretical longitudinal form factors for the second 4+, 6.01 MeV state using 
different single particle potential compared with the experimental data taken from          
Ref. [7, 27]. 
 
2. Negative parity states  
     In this work we have presented the 
results of high resolution form factor 
measurements for 1-, 3- and 5- states, in 
24Mg. 1- T= 0 state have been 
identified at excitation energies of 
7.553 MeV. The sdpf SM space with 
SDPFMU two-body effective 
interaction [38] are used in 
reproducing the total squared form 
factor the data for all q values, as 
shown by various nuclear single-
particle potentials.  In Fig. 8, the total 
squared form factors for the lowest 1- 
T= 0 state at excitation energy of 7.553 
MeV are compared with the 
experimental data of Ref. [6]. It can be 
seen that the results inclusion by 
adopting the various models enhances 
the calculations and describes the data 
very well at both second and third 

maxima and locate the diffraction 
minimum at its right position.  
     3- T= 0 state have been identified at 
excitation energies of 7.616 MeV. In 
Fig. 9, the total squared form factors 
for the lowest first 3- T= 0 state at 
excitation energy of 7.616 MeV are 
compared with the experimental data 
of Ref. [6]. In general, the results lie 
agreement with the experimental data. 
     In Fig. 10, the total squared form 
factors for the 5- T= 0 state at 
excitation energy of 10.030 MeV, are 
compared with the experimental data 
of Ref. [6]. The multipolarity included 
in this transition is pure longitudinal 
sdpf SM space predictions of the 
longitudinal C5 with SDPFMU 
effective interaction. All results in this 
state are close to each other and 
slightly under predict the experimental 
data. 
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Fig. 8: Total squared form factors for the first 1-, 7.553 MeV state using different single 
particle potential compared with the experimental data taken from Ref. [6]. 
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Fig. 9: Total squared form factors for the second 31
-, 7.62 MeV state using different single 

particle potential compared with the experimental data taken from Ref. [6]. 
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Fig. 10: Total squared form factors for the second 5-, 10.03 MeV using different single 
particle potential compared with the experimental data taken from Ref. [6]. 
   
C. Reduced transition probabilities  
      The reduced transition probabilities 
B(C2↑) and B(C4↑) are also calculated 
for the positive-parity states sd-shell 
nuclei and compared with the available 
experimental data. Also, an excellent 
overlap between the experimental [39, 
40] and calculated B(C2↑). An 
exception is the B(C4↑) value. These 
values are displayed in Table 2. The 

theoretical B(C1↑), B(C3↑) and B(C5↑) 
values, are calculated for the negative-
parity states sdpf SM spaces and the 
experimental B(C3↑) values, are listed 
in Table 3. The observables such as 
B(C1↑), B(C2↑) and B(C3↑), within the 
low-lying state, provide important 
information about the nuclear   
structure [41, 42]. 
 

 
Table 2: Comparison of experimental transition probabilities with predictions of Present 
Work for positive-parity states in 24Mg. 

E (MeV) Jπ Present Work
B(C2↑)(e2 fm4)

Experiment Present Work
B(C4↑)(e2 fm8)

Experiment 

1.37 
1.37 
6.01 

 

2 1
+ 

2 2
+ 

4+ 

 

427.5 
45.50 

428±9 [39]
22±2  [40] 

 

 
 

682 

 
 

43 ± 6 [43] 
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Table 3: Comparison of experimental transition probabilities with predictions of Present 
Work for negative- parity states in 24Mg. 

E (MeV) Jπ Present Work
B(C1↑)(e2fm2)

Present Work
B(C3↑)(e2 fm6)

Present Work
B(C5↑)(e2 fm10)

Experiment     
[44] 

7.553 
8.438 
9.148 
7.616 
8.358 
10.03 
13.86 

11
- 

12
- 

13
- 

31
- 

32
- 

5- 

5- 

0.721 × 10-10

0.0 

0.8982×10-10 

 
 
 
 

 
 
 

0.121×104 
0.148× 102 

 
 
 
 
 

0.1406×107 

0.1406×107 

 
 
 

5.62×102 
1.58 × 102 

 
 

 
IV. Conclusions  
     Now, we are still continuing our 
researches in applying the SHF with 
SM results to study the nuclear 
structure of 24Mg nucleus containing 
both positive and negative parity 
states. Especially, the inelastic 
electroexcitation form factors in the 
momentum-transfer range 0.0 < q < 3.0 
fm-1, and transition probabilities have 
been calculated. Four single particle 
potentials, we have considered the 
Skyrme parameterizations, HO and 
WS potentials. In every potential 
parameterization exist which provide a 
fine description of nuclear bulk 
properties and also of excited states of 
nuclei. From the outcomes of our 
calculations, it is possible to conclude 
that the reproduced charge rms, form 
factors and transition probabilities 
using the sd and sdpf SM spaces with 
different parameterizations are broadly 
consistent with the major trends of the 
available experimental data without 
any additional fit of parameters. We 
can certain that combining these two 
methods can accommodate very well 
in the elastic and inelastic nuclear 
properties and work better for low 
lying states than for higher excitations. 
In addition, it can be used for 
reproducing the positive and negative 
parity states after choosing the suitable 
model space, effective two-body 
interaction and parameterization to get 
highly descriptive and predictive 
results when investigating different 

nuclear configurations as well as for 
unstable nuclei. 
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