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Abstract Key words

A statistical optical potential has been used to analyze and Spherical-statistical
evaluate the neutron interaction with heavy nuclei *’Au at the optical model, shape
neutron energy range (1-20 MeV). Empirical formulae of the optical and compound elastic
potentials parameters are predicted by using ABAREX Code with Scattering, dispersion
minimize accuracy compared with experimental bench work data. " feal potential.
The total elastic, absorption, shape elastic and total compound cross-
sections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion Article info.
relation linking between real and imaginary potential is analyzed Received: Sep. 2018
with more accuracy. The results indicate the behavior of the Accepted: Nov. 2018
dispersion contribution in imaginary potential has a parabolic change Published: Mar. 2019
about the Fermi surface energy while in the real potential it fall with
increasing the neutron energy. Good agreements have been achieved
with the available experimental data.
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Introduction imaginary parts are energy dependent.

The SOM is one of the simplest and The real part is referred to the
most successful models which are used refraction index while the imaginary
to describe the elastic scattering of part accounts for the absorption by the
particle from nuclei. The solution to medium which described the formation
the complex many-body problem is of the compound nucleus. The
approximated the interaction of two imaginary part of the potential interacts
structureless particles through an with the incident wave and attenuates
effective potential. This represents by a of the incident nucleon [1, 2]. The
complex potential, where both real and model was first proposed by Serber [3]
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and used by Fernbach et al. [4] to
calculate the probability scattering and
absorption of 90 MeV neutrons by a
range of nuclei. The SOM basis and
starting point for all the nuclear model
calculation which gives information
about nuclear shape, nuclear structure
and so on. The parameters are the main
part and the knowledge of the model
that play an essential role in the
description of many nuclear reactions,
e.g. inelastic scattering processes,
transfer or the direct reactions, and in
nuclear  structure  studies, the
transmission  coefficients and the
inverse cross sections that used in
statistical theory are also calculated
with optical model [5]. The nuclear
potentials are in general energy-
dependent and nonlocal. The energy
dependency of the real and imaginary
parts of the optical model potential can
be represented by a dispersion
relation [6, 7].

Mahuaux and co-workers [8, 9]
studied the nuclear reaction using the
SOM containing dispersion in optical
model relations (DOM), which
connected the imaginary part with a
corrected contribution to the real part
of the model that follows from the
requirement of causality principle
scattering wave and cannot be emitted
before the arrival of the incident wave
[10]. Great progress has been
accomplished on  analyze the
dispersive in SOM for a wide range of
nucleon scattering energy  with
different nuclei [11,12] and distinguish
success in deriving SOM potentials on
closed shell nuclei by [13-16] for
which the experimental data for bound
states are compared.

Optical model has been used to
analyze the elastic scattering cross-
section for p+ “°Ca and predicted new
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optical parameters at proton energy
range (9- 22 MeV) [17]. Also, the
elastic scattering angular distribution
of *®Ni (*He, °He) *°Ni reaction have
been studied by [18]. Different nuclear
potentials are obtained with the
phenomenological and the microscopic
approach based on optical model.

The dispersion in potentials can be
described by the nuclear mean field
between the negative energy (bound
state) and positive energy (scatter
state). Then, it is able to fit the
experimental nuclear  probabilities
more accurately than the simple optical
model.

Theoretical background of SOM and
DOM

The potential can be described by
v(r) +iw(r) where v(r) is the real
part of the potential and w(r) is the
imaginary part of the potential, where
the elastic cross- section for potential
scattering can be calculated by using
SOM. The potentials are consisted of
Saxon-Woods volume and surface
derivation forms which can be
described as [19]:
Vop = Ur () +iU; (r) + Uso (1) (1)
where Ug (r), U;(r)and Ug,(r) are
the real, imaginary and spin orbit
potentials, respectively.
The real potential is assumed to have
the Saxon-Woods form, and the
imaginary potential is a surface Saxon-
Woods derivation form. A spin orbit
potential is in the Thomas form and the
primary effect and it is the polarization
of the scattered particle. The real
potential is responsible for elastic
scattering, while the imaginary
potential is responsible for absorption.
This potential can be written as follows
[19]:

Vop (1) = =Vaf(x) — iWofGay) = 4Wp £ (X1p)] + () Voo )2 f (Ks) ()
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where Vg, W,,, Wy and Vg are the real,
imaginary volume, imaginary surface
and spin-orbit potentials, respectively,
2
[ . ] is the square of pion-Compton
mg C
wavelength, the quantity (I. ) is the
scalar product of the orbital and
intrinsic angular momentum operators
[20], f(x), f (Xiv), T (Xip) and f (Xso),
are the radial dependent form factor for
the real, volume, surface and spin-orbit
terms respectively.
The form factors in Eq. (2) can be
defined by Saxon-Woods form [19]:

f(r,R,a) = [1 + e(%) ]_1

3)

where R is the nuclear radius, R =
roAY/3 and a is the surface diffuseness
parameter.

It is expected that the low neutron
energies attenuated near the surface of
the target nucleus while the increasing
in  neutron energy caused more
absorption for entire nucleus volume.
For this the reason the SOM analysis
deals with surface and volume
absorption terms.

DOM can provided an analytic way
of extrapolating the real part of the
mean field from positive towards
negative energies, by considering the
prediction of single-particle bound-
state and a self-consistent description
of the energy dependence of the SOM,
in particular near the Fermi energy.
Furthermore, DOM imposes an
additional constraint on the real and
imaginary parts and thus reduces the
obscurities in deriving the
phenomenological optical parameters
from experimental data [21, 22].

In the following dispersion relation
treatment, the real central potential
strength consists of a term Vyg(r, E),

Hartree-Fook  potential and a
correction  depth  potential  term,
AV(r,E):

V(r,E) = Vyp(r,E) + AV(r,E) 4)
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where the depth of the dispersion term
of potential AV (r, E) can be written as
[22]:

oo W(r,E") dE’
av(rE) =p [0 MR )
where W(r,E) is the imaginary

potential as a function of the scattering
energy and can be expressed in terms
of Saxon-Woods derivative form and P
is the principle of the integral.

Since W(r, E") can be expressed in
volume and surface terms, where the
volume term represents the absorption
potential while the other is the
potential accompany around the Fermi
energy of the target nuclei. Therefore,
the volume dispersion term is given
by:

o W(rE P
V() = 37 SR R ©)
And the surface dispersion term is
given by'

© V(r E) ’
One can notlced the integral in

equation (6) should be analytical for a
very restricted number of absorption
potential energy dependence.
Therefore, in order to consider the
dispersive in potential it is assumed the
AV (E) vanish at the Fermi energy Ef
and can be written in the following
form:

AV(E) = 2%, WE) (5
(E'- Ef))d E’

with the assumption that W (E) be
symmetric with respect to the Fermi
energy Er, Eq. (8) can be expressed the
form which is stable under numerical
treatment namely [23]:

W(E")

AV(E) = 2 (B~ ED) [, (g -

W(E) /
(E’_Ef)z) dE ©)

where the dispersion term AV(E) is
divided into two terms, AV,(E) and
AV (E), which arise through dispersion
relation, Eq. (5) from the volume

(E'-E)

(8)
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Wy (E) and surface Ws(E) imaginary
potentials, respectively.

To simplify present work the
imaginary  potential  is  energy
independent using the definition of the
SOM equation, where the real volume
V,(E) and surface V,(E) central part
of the DOM potentials are given by:
Vy(E) = Vi + AV, (E), Vs(E)

= AV5(E) (10)
where Ve (E) is a linear function of E
for large negative E, and is an
exponential for large positive E.
Following [24], the analyses of the
optical potentials using the dispersion
relations are not yet able to give any
additional information, mainly because
the phenomenological analyses in the
high energy region are insufficiently
accurate and extensive. They should
considered the update improving data
which is the only way for separating
the real energy dependence of the
observed optical potential and the
spurious energy dependence
introduced by the approximation of the
non-local part by an equivalent local
potential [19].

Results and discussion

Theoretical calculated of neutron
elastic scattering cross section from
YAu for energy range 1-20 MeV is
achieved in the present work. The
calculated differential scattering cross
sections are compared with the
experimental cross section data from
EXFOR [23]. Various potential well
depths of n-"*’Au reaction have been
investigated at different neutron
energy, as shown in Fig.1. Where the
imaginary part is described by Saxon-
Wood form with energy-independent
geometry parameters. In these analysis
different types of absorption potentials
have been considered, such volume
plus surface, and volume plus surface
absorptive potential. The diffuseness
and radius of these potentials have
been constant or to depend on the mass
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number. The energy dependence of the
depth of the volume and surface terms
of the imaginary potential is given by a
Fermi-type  function, and  the
parameters are adjusted to reproduce
experimental data. In the case of the
surface imaginary potential, the slow
decrease of the volume integral at
energies above the Fermi energy is
assumed to reflect the gradual decrease
of surface absorption with increasing
energy, an observation confirmed in
nucleon SOM analyses. The effect of
the dispersive contributions of the
imaginary volume and surface terms
on the real potential both the depth and
radial shape is affected. Where the real
potential term full with increasing
neutron energy while the imaginary
potential term has a parabolic variation
about the Fermi surface energy. For
negative energies, the real potential
deviates from regular behavior in the
Fermis surface region due to DOM
effect while the imaginary potential is
attached to the fragmentation width of
the target nucleus bound states. After
optimize the OMP of the neutron
induced elastic cross section of **’Au
has been calculated and evaluated at 1-
20 MeV energy range, as shown in
Table 1 and Fig. 2. The recommended
Ccross section are in a good agreement
with available experimental data. Now
the neutron energy can be depended on
integral (shape elastic, absorption and
total cross section) for ’Au heavy
nuclei and calculated using the SOM
optimization, which are reasonable and
satisfactory for integral cross section
prediction of **’Au nuclei at energy
below 20 MeV. The irregular behavior
of this figure is the nucleus can be
existed in a very large number of
excited states, and if it is excited by the
interaction the cross- section shows
resonances whenever the incident
energy is such that the energy of the
compound system corresponds to that
of one of the excited states of the
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nucleus [25]. The SOM have been
optimized through the minimization of
chi- square per point, within the range
(1.086x107°) for the range of target
nuclei (100 > A amu), and compared
results

the calculated with

Vol.17, No.40, PP. 88-94

experimental data. The absorption
cross section on imaginary part of the
nuclear potential that takes into a count
the absorption of the reaction flux from
the elastic channel to the non-elastic is
considered.

Paotential Diepth (¥leV)

o 40 ED

l
120 160 200

Neatron Energy (Me'V)
Fig. 1: The various potential well depths as a function of neutron energy incident for **’Au

nuclei.

Table 1: The present calculated total integral cross-section using SOM in *’Au (n, n) *’Au
reaction at different energies compared with available experimental results.

Ey Total cross- Experiential total cross- | Absorption Shape Total
(MeV) section (b) section(b) [26, 27] (b) elastic (b) | compound (b)
5.293 6.94313 6.548 2.47238 44716 2.47153
6.027 6.40431 6.133 2.40284 4.00229 2.40201
7.003 5.76276 5.591 2.29823 3.40536 2.29741
8.055 5.24047 5.258 2.2824 2.95888 2.288159
9.082 5.0656 5.122 2.29781 2.70858 2.297
10.04 4.91195 5.076 2.2907 2.62202 2.28993
11.09 4.90877 5.106 2.25603 2.6535 2.25527
12.02 4.98448 5.169 2.23652 2.74872 2.23576
13.02 5.13617 5.247 2.23321 2.90372 2.23245

14.1 5.35171 5.37 2.24358 3.10889 2.24283
15.12 5.54819 5.461 2.24649 3.30245 2.24575
16.06 5.7137 5.557 2.22857 3.48587 2.22783
17.05 5.83127 5.629 2.20005 3.63195 2.19932
18.11 5.92371 5.68 2.16027 3.76416 2.15955
19.04 5.97998 5.704 2.13381 3.84689 2.13304
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Fig. 2: The present calculated total Integral Cross-Section using SOM for neutron energy
scattering on**’Au nuclei at different energies compared with experimental data [26, 27].

Conclusions

1. The effect of the dispersive
contributions of the real part decreases
with increasing energy and the
imaginary part has a parabolic
variation around the Fermi surface
energy.

2. It concludes that the surface
imaginary strength fall linearly with
energy concurrently where the volume
imaginary strength increase linearly
with energy.

3. Depending on Fig.2 the best fit of
OMP is employed to calculate the
integrated cross-section, absorption,
shape elastic, total elastic and total
compound cross-sections, of *’Au(n,
n) *’Au reaction at different incident
neutron energy (1-20 MeV). The
comparison with experimental results
show good agreement has been
obtained for the total elastic cross-
section with minimization of chi-
square per point for reach within the
range (1.086x10°).
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